PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): o2981.
Published online 2009 November 4. doi:  10.1107/S1600536809045528
PMCID: PMC2971959

Methyl 4,5-diacet­oxy-1-oxo-2-phenyl­perhydro-4,6-epoxy­cyclo­penta­[c]pyridine-7-carboxyl­ate ethanol solvate

Abstract

The title compound, the product of an acid-catalysed Wagner–Meerwein skeletal rearrangement, crystallizes as an ethanol monosolvate, C20H21NO8·C2H6O. The title mol­ecule comprises a fused tricyclic system containing two five-membered rings (cyclo­pentane and tetra­hydro­furan) in the usual envelope conformations and one six-membered ring (piperidinone) adopting a flattened twist–boat conformation.

Related literature

For general background, see: Popp & McEwen (1958 [triangle]); Hogeveen & Van Krutchten (1979 [triangle]); Hanson (1991 [triangle]). For related structures, see: Lindberg (1980 [triangle]); Jung & Street (1985 [triangle]); Keay et al. (1989 [triangle]); Zubkov et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2981-scheme1.jpg

Experimental

Crystal data

  • C20H21NO8·C2H6O
  • M r = 449.45
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2981-efi1.jpg
  • a = 23.2211 (13) Å
  • b = 14.9519 (8) Å
  • c = 12.9201 (7) Å
  • β = 107.735 (1)°
  • V = 4272.7 (4) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 100 K
  • 0.25 × 0.18 × 0.10 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003 [triangle]) T min = 0.976, T max = 0.989
  • 26806 measured reflections
  • 6173 independent reflections
  • 5073 reflections with I > 2σ(I)
  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.097
  • S = 1.00
  • 6173 reflections
  • 293 parameters
  • H-atom parameters constrained
  • Δρmax = 0.39 e Å−3
  • Δρmin = −0.26 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT-Plus (Bruker, 2001 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809045528/rk2176sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809045528/rk2176Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Professor Abel M. Maharramov for fruitful discussions and help with this work.

supplementary crystallographic information

Comment

Wagner–Meerwein rearrangement and its analogues are largely used in current organic chemistry for the synthesis of wide range of natural derivatives, particular, terpenes and steroids. However, only a few examples of this skeletal rearrangement for nitrogen-containing compounds have been studied (Lindberg, 1980; Jung & Street, 1985; Keay et al., 1989; Zubkov et al., 2004). This work reports the structural characterization of a product of the acid–catalyzed Wagner–Meerwein skeletal rearrangement - methyl 1–oxo–2–phenyloctahydro–1H–4,6–epoxycyclopenta[c] pyridine–7–carboxylate (I).

Compound I crystallizes as an ethanol solvate in 1:1 ratio, i.e., C20H21NO8.C2H5OH. The molecule I comprises a fused tricyclic system containing two five–membered rings (cyclopentane and tetrahydrofuran) and one six–memberedring (tetrahydropyridinone) (Fig. 1). Both five–membered rings of the bicyclic fragment have usual envelope–conformations, and the central six–membered ring adopts the flattened twist–boat–conformation. The nitrogen N2 atom has a trigonal–planar geometry (sum of the bond angles is 357.5°), which is slightly pyramidalized due to the steric reasons. The dihedral angle between the planes of the tetrahydropyridinone and phenyl rings is 57.73 (4)°. The two carboxylate substituents at the C4 and C5 carbon atoms are in the sterically unfavorable syn–periplanar configuration relative to the tetrahydrofuran ring. Such a disposition is explained by the direction of the Wagner–Meerwein rearrangement.

The molecules I are diastereomers and possess six asymmetric centers at the C4, C4A, C5, C6, C7 and C7A carbon atoms. The crystal of (I) is racemate and consists of enantiomeric pairs with the relative configuration of the centers rac-4R*,4aR*,5R*, 6S*,7S*,7aR*.

The ethanol solvate molecule is bound to the molecule I by the strong hydrogen bond O9—H9O···O1i [O9···O1i = 2.763 (1)Å, H9O···O1i = 1.87Å, O9—H9O···O1i = 168°]. Symmetry code: (i) -x+1/2, -y+3/2, -z+1.

Experimental

An etherate of boron trifluoride (0.4 ml, 3.2 mmol) was added to a solution of methyl ether of (1aR*,2R*,3R*,3aS*, 6aR*,6bR*)–4–oxo–5–phenylocta–hydro–2, 6a–epoxyoxireno[e]isoindol–3–carboxylic acid (1.6 mmol) in 15 ml acetic anhydride. The mixture was stirred for 2 h at 293 K, diluted with 100 ml water, treated with a saturated solution of sodium carbonate and extracted by chloroform (3× 50 ml). The extract was dried by magnesium sulfate, separated and then evaporated to give white crystals of (I) (Fig. 2). Yield is 75%. M.p. = 463–464 K. IR, ν/cm-1: 1665, 1738 (NCO, CO2Me, COMe). Mass spectrum, m/z (Ir(%)): 403 [M+] (1), 343 (5), 256 (4), 230 (5), 188 (16), 168 (6), 124 (20), 104 (17), 77 (22), 43 (100). 1H NMR (CDCl3, 293 K): δ = 7.39 (m, 4H, H9, H10, H12, H13), 7.28 (m, 1H, H11), 4.90 (d, 1H, H5, J5,4A = 1.3), 4.84 (s, 1H, H6), 4.47 (d, 1H, H3A, J3A,3B = 13.4), 4.01 (d, 1H, H3B, J3A,3B = 13.4), 3.73 (s, 3H, CO2Me), 3.65 (m, 1H, H4A), 3.29 (d, 1H, H7A, J7,7A = 11.4), 3.28 (d, 1H, H7, J7,7A = 11.4), 2.11 (s, 3H, COMe), 2.04 (s, 3H, COMe). 13C NMR (CDCl3, 293 K): δ = 170.1 (C1), 168.8 (CO2Me), 168.3, 166.9 (OCOMe), 141.5 (C8), 129.4 (C10(C12)), 127.5 (C11), 126.7 (C9(C13)), 104.5 (C4), 82.2 (C6), 76.6 (C5), 57.6 (C3), 52.5 (CO2Me), 46.2 (C7), 44.8 (C4A), 39.0 (C7A), 21.7, 20.8 (OCOMe).

Refinement

The hydroxy–H atom of the ethanol solvate molecule was localized in the difference-Fourier map and included in the refinement with fixed positional and isotropic displacement parameters [Uiso(H) = 1.5Ueq(O)]. The other hydrogen atoms were placed in calculated positions with C—H = 0.95–1.00Å and refined in the riding model with fixed isotropic displacement parameters [Uiso(H) = 1.5Ueq(C) for CH3–groups and Uiso(H) = 1.2Ueq(C) for the other groups].

62 reflections, with experimentally observed F2 deviating significantly from the theoretically calculated F2, were omitted from the refinement.

Figures

Fig. 1.
Molecular structure of I with the atom–numbering scheme. Displacement ellipsoids are shown at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius. Dashed line indicates the intermolecular hydrogen bond.
Fig. 2.
Wagner–Meerwein skeletal rearrangement of 3a,6;4,5–diepoxyisoindol–1–one.

Crystal data

C20H21NO8·C2H6OF(000) = 1904
Mr = 449.45Dx = 1.397 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 7315 reflections
a = 23.2211 (13) Åθ = 2.5–32.3°
b = 14.9519 (8) ŵ = 0.11 mm1
c = 12.9201 (7) ÅT = 100 K
β = 107.735 (1)°Prism, colourless
V = 4272.7 (4) Å30.25 × 0.18 × 0.10 mm
Z = 8

Data collection

Bruker APEXII CCD diffractometer6173 independent reflections
Radiation source: Fine–focus sealed tube5073 reflections with I > 2σ(I)
GraphiteRint = 0.034
[var phi] and ω scansθmax = 30.0°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)h = −32→32
Tmin = 0.976, Tmax = 0.989k = −20→21
26806 measured reflectionsl = −18→18

Refinement

Refinement on F2Primary atom site location: Direct
Least-squares matrix: FullSecondary atom site location: Difmap
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: Difmap
wR(F2) = 0.097H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.05P)2 + 2.250P] where P = (Fo2 + 2Fc2)/3
6173 reflections(Δ/σ)max = 0.001
293 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = −0.26 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.20094 (3)0.65247 (5)0.44248 (6)0.01914 (16)
O20.36476 (3)0.48946 (5)0.28968 (6)0.01356 (14)
O30.31626 (4)0.45288 (6)0.11528 (6)0.02113 (17)
O40.44084 (3)0.64234 (5)0.34858 (6)0.01609 (15)
O50.48418 (4)0.61959 (6)0.52738 (7)0.02546 (19)
O60.18854 (4)0.70348 (6)0.19818 (7)0.02429 (18)
O70.23968 (4)0.81107 (5)0.14300 (6)0.02182 (17)
O80.32310 (3)0.62521 (5)0.20762 (5)0.01330 (14)
C10.23525 (4)0.62345 (7)0.39442 (8)0.01334 (18)
N20.22728 (4)0.54326 (6)0.34251 (7)0.01240 (16)
C30.25757 (4)0.52025 (7)0.26168 (8)0.01347 (18)
H3A0.23270.54210.18960.016*
H3B0.26020.45430.25740.016*
C40.32150 (4)0.55971 (6)0.28697 (7)0.01159 (18)
C4A0.34447 (4)0.60924 (7)0.39505 (8)0.01199 (17)
H4A0.36140.57080.46070.014*
C50.38847 (4)0.67743 (7)0.37165 (8)0.01411 (18)
H50.39910.72620.42720.017*
C60.34318 (4)0.70795 (7)0.26634 (8)0.01408 (18)
H60.35920.75330.22520.017*
C70.29088 (4)0.74178 (7)0.30629 (8)0.01415 (18)
H70.30120.80260.33900.017*
C7A0.29279 (4)0.67293 (7)0.39905 (8)0.01278 (18)
H7A0.30630.70580.46980.015*
C80.17593 (4)0.48940 (7)0.34079 (8)0.01284 (18)
C90.13311 (5)0.46690 (7)0.24318 (8)0.01558 (19)
H90.13660.48910.17640.019*
C100.08501 (5)0.41157 (7)0.24403 (9)0.0186 (2)
H100.05570.39560.17760.022*
C110.07984 (5)0.37975 (7)0.34176 (9)0.0187 (2)
H110.04670.34250.34200.022*
C120.12304 (5)0.40223 (7)0.43944 (9)0.0188 (2)
H120.11950.38020.50620.023*
C130.17128 (5)0.45692 (7)0.43901 (8)0.0163 (2)
H130.20100.47210.50540.020*
C140.35671 (5)0.43974 (7)0.19797 (8)0.01534 (19)
C150.40315 (5)0.36697 (7)0.21549 (9)0.0204 (2)
H15A0.42090.36730.15580.031*
H15B0.38390.30900.21770.031*
H15C0.43490.37710.28440.031*
C160.48659 (5)0.61592 (7)0.43569 (9)0.0175 (2)
C170.53882 (5)0.58192 (9)0.40188 (10)0.0243 (2)
H17A0.57200.56550.46650.036*
H17B0.55250.62870.36170.036*
H17C0.52610.52930.35530.036*
C180.23336 (5)0.74775 (7)0.21196 (8)0.01519 (19)
C190.18882 (6)0.82342 (9)0.04612 (9)0.0259 (2)
H19A0.19580.87610.00650.039*
H19B0.15190.83200.06660.039*
H19C0.18430.7704−0.00030.039*
O90.40693 (4)0.86539 (6)0.51075 (7)0.02495 (18)
H9O0.37270.86720.53100.037*
C200.45662 (5)0.86808 (8)0.60809 (9)0.0233 (2)
H20A0.45470.81640.65490.028*
H20B0.45510.92370.64880.028*
C210.51438 (5)0.86493 (9)0.57799 (11)0.0284 (3)
H21A0.54900.86490.64420.043*
H21B0.51660.91740.53390.043*
H21C0.51510.81050.53620.043*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0175 (4)0.0206 (4)0.0229 (4)−0.0009 (3)0.0115 (3)−0.0067 (3)
O20.0151 (3)0.0152 (3)0.0112 (3)0.0032 (3)0.0053 (3)−0.0011 (3)
O30.0213 (4)0.0273 (4)0.0145 (4)0.0032 (3)0.0049 (3)−0.0050 (3)
O40.0118 (3)0.0227 (4)0.0143 (3)0.0001 (3)0.0047 (3)0.0001 (3)
O50.0213 (4)0.0378 (5)0.0159 (4)0.0030 (3)0.0037 (3)0.0008 (3)
O60.0179 (4)0.0269 (4)0.0240 (4)−0.0027 (3)0.0004 (3)0.0072 (3)
O70.0250 (4)0.0205 (4)0.0165 (4)−0.0022 (3)0.0012 (3)0.0054 (3)
O80.0166 (3)0.0142 (3)0.0093 (3)−0.0015 (3)0.0042 (3)0.0007 (2)
C10.0135 (4)0.0147 (4)0.0118 (4)0.0008 (3)0.0037 (3)−0.0004 (3)
N20.0123 (4)0.0152 (4)0.0113 (4)−0.0016 (3)0.0060 (3)−0.0020 (3)
C30.0138 (4)0.0165 (4)0.0116 (4)−0.0020 (3)0.0061 (3)−0.0035 (3)
C40.0128 (4)0.0128 (4)0.0097 (4)0.0011 (3)0.0043 (3)0.0004 (3)
C4A0.0127 (4)0.0145 (4)0.0091 (4)0.0003 (3)0.0038 (3)−0.0001 (3)
C50.0118 (4)0.0170 (4)0.0138 (4)−0.0006 (3)0.0044 (3)−0.0010 (4)
C60.0145 (4)0.0143 (4)0.0139 (4)−0.0020 (3)0.0049 (4)0.0003 (3)
C70.0147 (4)0.0133 (4)0.0139 (4)−0.0007 (3)0.0036 (4)−0.0008 (3)
C7A0.0133 (4)0.0138 (4)0.0114 (4)0.0000 (3)0.0041 (3)−0.0017 (3)
C80.0124 (4)0.0135 (4)0.0135 (4)0.0004 (3)0.0053 (3)−0.0006 (3)
C90.0144 (4)0.0186 (5)0.0137 (4)−0.0002 (4)0.0042 (4)0.0002 (4)
C100.0135 (4)0.0212 (5)0.0201 (5)−0.0019 (4)0.0036 (4)−0.0024 (4)
C110.0149 (5)0.0172 (5)0.0270 (5)−0.0014 (4)0.0106 (4)−0.0003 (4)
C120.0188 (5)0.0209 (5)0.0199 (5)0.0017 (4)0.0105 (4)0.0040 (4)
C130.0165 (5)0.0203 (5)0.0131 (4)0.0000 (4)0.0060 (4)0.0005 (4)
C140.0177 (5)0.0168 (5)0.0140 (4)−0.0004 (4)0.0085 (4)−0.0020 (4)
C150.0232 (5)0.0196 (5)0.0208 (5)0.0044 (4)0.0102 (4)−0.0014 (4)
C160.0140 (4)0.0199 (5)0.0174 (5)−0.0027 (4)0.0032 (4)−0.0002 (4)
C170.0157 (5)0.0332 (6)0.0246 (6)0.0036 (4)0.0072 (4)0.0026 (5)
C180.0181 (5)0.0129 (4)0.0145 (4)0.0027 (4)0.0049 (4)−0.0006 (3)
C190.0285 (6)0.0264 (6)0.0172 (5)0.0011 (5)−0.0011 (4)0.0063 (4)
O90.0180 (4)0.0368 (5)0.0221 (4)−0.0021 (3)0.0091 (3)−0.0093 (3)
C200.0207 (5)0.0302 (6)0.0206 (5)−0.0027 (4)0.0089 (4)−0.0044 (4)
C210.0204 (5)0.0359 (7)0.0315 (6)−0.0040 (5)0.0117 (5)−0.0063 (5)

Geometric parameters (Å, °)

O1—C11.2288 (12)C8—C91.3886 (14)
O2—C141.3625 (12)C8—C131.3933 (14)
O2—C41.4466 (11)C9—C101.3927 (14)
O3—C141.2044 (13)C9—H90.9500
O4—C161.3501 (13)C10—C111.3884 (16)
O4—C51.4366 (12)C10—H100.9500
O5—C161.2040 (13)C11—C121.3930 (16)
O6—C181.2001 (13)C11—H110.9500
O7—C181.3384 (13)C12—C131.3882 (15)
O7—C191.4475 (14)C12—H120.9500
O8—C41.4264 (11)C13—H130.9500
O8—C61.4518 (12)C14—C151.4998 (15)
C1—N21.3587 (13)C15—H15A0.9800
C1—C7A1.5125 (13)C15—H15B0.9800
N2—C81.4335 (12)C15—H15C0.9800
N2—C31.4668 (12)C16—C171.4978 (15)
C3—C41.5372 (13)C17—H17A0.9800
C3—H3A0.9900C17—H17B0.9800
C3—H3B0.9900C17—H17C0.9800
C4—C4A1.5262 (13)C19—H19A0.9800
C4A—C51.5372 (14)C19—H19B0.9800
C4A—C7A1.5451 (13)C19—H19C0.9800
C4A—H4A1.0000O9—C201.4252 (14)
C5—C61.5145 (14)O9—H9O0.9090
C5—H51.0000C20—C211.5067 (16)
C6—C71.5425 (14)C20—H20A0.9900
C6—H61.0000C20—H20B0.9900
C7—C181.5118 (14)C21—H21A0.9800
C7—C7A1.5703 (14)C21—H21B0.9800
C7—H71.0000C21—H21C0.9800
C7A—H7A1.0000
C14—O2—C4117.69 (8)C8—C9—C10119.40 (9)
C16—O4—C5115.76 (8)C8—C9—H9120.3
C18—O7—C19116.10 (9)C10—C9—H9120.3
C4—O8—C6106.50 (7)C11—C10—C9120.16 (10)
O1—C1—N2123.31 (9)C11—C10—H10119.9
O1—C1—C7A120.55 (9)C9—C10—H10119.9
N2—C1—C7A115.91 (8)C10—C11—C12120.22 (10)
C1—N2—C8119.40 (8)C10—C11—H11119.9
C1—N2—C3122.39 (8)C12—C11—H11119.9
C8—N2—C3115.74 (8)C13—C12—C11119.85 (10)
N2—C3—C4113.58 (8)C13—C12—H12120.1
N2—C3—H3A108.8C11—C12—H12120.1
C4—C3—H3A108.8C12—C13—C8119.70 (10)
N2—C3—H3B108.8C12—C13—H13120.2
C4—C3—H3B108.8C8—C13—H13120.2
H3A—C3—H3B107.7O3—C14—O2123.08 (9)
O8—C4—O2110.24 (7)O3—C14—C15125.65 (10)
O8—C4—C4A104.24 (7)O2—C14—C15111.26 (9)
O2—C4—C4A106.47 (7)C14—C15—H15A109.5
O8—C4—C3110.22 (8)C14—C15—H15B109.5
O2—C4—C3110.19 (8)H15A—C15—H15B109.5
C4A—C4—C3115.25 (8)C14—C15—H15C109.5
C4—C4A—C5102.12 (7)H15A—C15—H15C109.5
C4—C4A—C7A105.73 (8)H15B—C15—H15C109.5
C5—C4A—C7A99.63 (8)O5—C16—O4123.12 (10)
C4—C4A—H4A115.8O5—C16—C17125.93 (10)
C5—C4A—H4A115.7O4—C16—C17110.95 (9)
C7A—C4A—H4A115.8C16—C17—H17A109.5
O4—C5—C6108.88 (8)C16—C17—H17B109.5
O4—C5—C4A117.00 (8)H17A—C17—H17B109.5
C6—C5—C4A93.17 (7)C16—C17—H17C109.5
O4—C5—H5112.1H17A—C17—H17C109.5
C6—C5—H5112.1H17B—C17—H17C109.5
C4A—C5—H5112.1O6—C18—O7123.87 (10)
O8—C6—C5103.73 (8)O6—C18—C7126.90 (10)
O8—C6—C7107.10 (8)O7—C18—C7109.22 (9)
C5—C6—C7101.55 (8)O7—C19—H19A109.5
O8—C6—H6114.4O7—C19—H19B109.5
C5—C6—H6114.4H19A—C19—H19B109.5
C7—C6—H6114.4O7—C19—H19C109.5
C18—C7—C6109.99 (8)H19A—C19—H19C109.5
C18—C7—C7A117.81 (8)H19B—C19—H19C109.5
C6—C7—C7A101.44 (8)C20—O9—H9O106.7
C18—C7—H7109.1O9—C20—C21108.45 (9)
C6—C7—H7109.1O9—C20—H20A110.0
C7A—C7—H7109.1C21—C20—H20A110.0
C1—C7A—C4A112.52 (8)O9—C20—H20B110.0
C1—C7A—C7118.12 (8)C21—C20—H20B110.0
C4A—C7A—C7102.72 (7)H20A—C20—H20B108.4
C1—C7A—H7A107.7C20—C21—H21A109.5
C4A—C7A—H7A107.7C20—C21—H21B109.5
C7—C7A—H7A107.7H21A—C21—H21B109.5
C9—C8—C13120.67 (9)C20—C21—H21C109.5
C9—C8—N2120.81 (9)H21A—C21—H21C109.5
C13—C8—N2118.46 (9)H21B—C21—H21C109.5
O1—C1—N2—C81.28 (15)C5—C6—C7—C7A−36.36 (9)
C7A—C1—N2—C8175.88 (8)O1—C1—C7A—C4A147.32 (9)
O1—C1—N2—C3162.71 (9)N2—C1—C7A—C4A−27.44 (12)
C7A—C1—N2—C3−22.70 (13)O1—C1—C7A—C7−93.22 (12)
C1—N2—C3—C434.80 (13)N2—C1—C7A—C792.02 (11)
C8—N2—C3—C4−163.14 (8)C4—C4A—C7A—C160.66 (10)
C6—O8—C4—O2−116.23 (8)C5—C4A—C7A—C1166.26 (8)
C6—O8—C4—C4A−2.31 (9)C4—C4A—C7A—C7−67.41 (9)
C6—O8—C4—C3121.92 (8)C5—C4A—C7A—C738.19 (9)
C14—O2—C4—O8−62.44 (10)C18—C7—C7A—C1−6.00 (13)
C14—O2—C4—C4A−174.93 (8)C6—C7—C7A—C1−126.08 (9)
C14—O2—C4—C359.44 (10)C18—C7—C7A—C4A118.46 (9)
N2—C3—C4—O8−112.96 (9)C6—C7—C7A—C4A−1.62 (9)
N2—C3—C4—O2125.15 (8)C1—N2—C8—C9119.00 (11)
N2—C3—C4—C4A4.66 (12)C3—N2—C8—C9−43.63 (13)
O8—C4—C4A—C5−30.95 (9)C1—N2—C8—C13−63.70 (13)
O2—C4—C4A—C585.63 (8)C3—N2—C8—C13133.67 (10)
C3—C4—C4A—C5−151.87 (8)C13—C8—C9—C100.25 (15)
O8—C4—C4A—C7A72.84 (9)N2—C8—C9—C10177.49 (9)
O2—C4—C4A—C7A−170.59 (7)C8—C9—C10—C110.39 (16)
C3—C4—C4A—C7A−48.09 (10)C9—C10—C11—C12−0.65 (16)
C16—O4—C5—C6177.19 (8)C10—C11—C12—C130.26 (16)
C16—O4—C5—C4A−78.93 (11)C11—C12—C13—C80.38 (16)
C4—C4A—C5—O4−64.12 (10)C9—C8—C13—C12−0.64 (15)
C7A—C4A—C5—O4−172.64 (8)N2—C8—C13—C12−177.94 (9)
C4—C4A—C5—C648.96 (8)C4—O2—C14—O31.47 (14)
C7A—C4A—C5—C6−59.56 (8)C4—O2—C14—C15−177.06 (8)
C4—O8—C6—C535.64 (9)C5—O4—C16—O51.18 (15)
C4—O8—C6—C7−71.26 (9)C5—O4—C16—C17−179.20 (9)
O4—C5—C6—O868.37 (9)C19—O7—C18—O6−1.27 (15)
C4A—C5—C6—O8−51.60 (8)C19—O7—C18—C7178.29 (9)
O4—C5—C6—C7179.39 (8)C6—C7—C18—O6113.51 (12)
C4A—C5—C6—C759.43 (8)C7A—C7—C18—O6−1.98 (15)
O8—C6—C7—C18−53.38 (10)C6—C7—C18—O7−66.03 (10)
C5—C6—C7—C18−161.82 (8)C7A—C7—C18—O7178.47 (8)
O8—C6—C7—C7A72.08 (9)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O9—H9O···O1i0.911.872.7628 (12)168

Symmetry codes: (i) −x+1/2, −y+3/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2176).

References

  • Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Hanson, J. R. (1991). Comp. Org. Synth. 3, 705–719.
  • Hogeveen, H. & Van Krutchten, E. M. G. A. (1979). Top. Curr. Chem. 80, 89–124.
  • Jung, M. E. & Street, L. J. (1985). Tetrahedron Lett 26, 3639–3642.
  • Keay, B. A., Rogers, C. & Bontront, J.-L. J. (1989). J. Chem. Soc. Chem. Commun. pp. 1782–1784.
  • Lindberg, T. (1980). Strategies and Tactics in Organic Synthesis, Vol. 2, pp. 221–262. New York: Academic Press.
  • Popp, F. D. & McEwen, W. E. (1958). Chem. Rev. 58, 321–401.
  • Sheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zubkov, F. I., Nikitina, E. V., Turchin, K. F., Aleksandrov, G. G., Safronova, A. A., Borisov, R. S. & Varlamov, A. V. (2004). J. Org. Chem 69, 432–43.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography