PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): m1598.
Published online 2009 November 18. doi:  10.1107/S160053680904793X
PMCID: PMC2971957

Bis[3-(2-carboxy­ethen­yl)pyridinium-1-acetato]dichloridozinc(II)

Abstract

In the title complex, [ZnCl2(C10H9NO4)2], the ZnII ion lies on a twofold rotation axis and is four-coordinated by two carboxyl­ate O atoms from two 3-(2-carboxy­ethen­yl)pyridinium-1-acetate ligands in a monodentate mode and two Cl atoms in a distorted tetra­hedral geometry. In the crystal structure, inter­molecular O—H(...)O hydrogen bonds link the mol­ecules into a double-chain structure extending parallel to [101].

Related literature

For general background to hydrogen bonds, see: Beatty (2003 [triangle]); Liu et al. (2008 [triangle]); Steiner (2002 [triangle]). For related structures, see: Mao et al. (1999 [triangle]); Sun et al. (2009 [triangle]); Wu et al. (2006 [triangle]); Zhang et al. (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1598-scheme1.jpg

Experimental

Crystal data

  • [ZnCl2(C10H9NO4)2]
  • M r = 550.63
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1598-efi5.jpg
  • a = 16.6247 (6) Å
  • b = 7.1973 (3) Å
  • c = 18.8873 (7) Å
  • β = 108.685 (1)°
  • V = 2140.81 (14) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.45 mm−1
  • T = 296 K
  • 0.12 × 0.12 × 0.08 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.845, T max = 0.893
  • 27422 measured reflections
  • 2450 independent reflections
  • 2309 reflections with I > 2σ(I)
  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028
  • wR(F 2) = 0.077
  • S = 1.06
  • 2450 reflections
  • 154 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.50 e Å−3
  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]) and DIAMOND (Brandenburg, 1999 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680904793X/hy2249sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680904793X/hy2249Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful for financial support from the NSFC (grant No. 20771038) and the Shanghai Leading Academic Discipline Project (B409).

supplementary crystallographic information

Comment

As we know, hydrogen bond is the most important of all directional intermolecular interactions. It is operative in determining molecular conformation, molecular aggregation, and the function of a vast number of chemical systems ranging from inorganic to biological (Beatty, 2003; Liu et al., 2008; Steiner, 2002). In this paper, we report the coordination and hydrogen-bond structure of the title complex derived from a zwitterionic dicarboxylic ligand, 1-carboxymethylpyridinium-3-acrylic acid. Zwitterionic dicarboxylic acids as ligands have received less attention in coordination chemistry than the common dicarboxylic acids, although an increasing number of coordination compounds with such ligands have been reported in recent years (Mao et al., 1999; Wu et al., 2006; Zhang et al., 2002).

The molecular structure is shown in Fig. 1. The ZnII ion, lying on a twofold rotation axis, is coordinated by two Cl atoms and the two zwitterionic ligands through carboxylate O atoms, with a distorted tetrahedral coordination geometry. The Zn—Cl and Zn—O distances lie in the usual range for a tetrahedral ZnII center (Table 1). The zwitterionic ligand is neutral with an anionic N-acetate group in a monodentate coordination mode and a cationic pyridinium ring. The acrylic group remains protonated and uncoordinated. This is in contrast with the only previous coordination compound with this ligand, [Ni3(C10H8NO4)2(N3)4(H2O)2].5H2O (Sun et al., 2009), in which both carboxylate groups are deprotonated and coordinated in a bidentate bridging mode, giving an extended coordination network. As shown in Fig. 2, the mononuclear complex molecules in the title compound are associated into a one-dimensional chain along the [101] direction through intermolecular O—H···O hydrogen bonds (Table 2). The hydrogen bond involves the acrylic hydroxyl group (O4—H4B) from one molecule and the uncoordinated acetate O atom (O2) from another molecule.

Experimental

The zwitterionic ligand was synthesized from ethyl pyridine-3-acrylate and ethyl bromoacetate according to the procedure for similar compounds (Mao et al., 1999). A mixture of the ligand (0.021 g, 0.10 mmol), ZnCl2 (0.014 g, 0.10 mmol), NaN3 (0.026 g, 0.40 mmol), ethanol (1.0 ml) and H2O (2.0 ml) was sealed in a Teflon-lined autoclave and heated at 343 K for 3 d, then cooled to room temperature at a rate of 5 K h-1, giving a pale yellow solution. Slow evaporation of the solution at room temperature for several days afforded colorless block crystals of the title compound (yield 46%). Analysis, calculated for C20H18Cl2N2O8Zn: C 27.22, H 3.43, N 22.22%; found: C 27.11, H 3.82, N 22.50%. FT—IR (KBr, cm-1): 3530m, 3348br, 2084vs, 2059vs, 1630vs, 1582 s, 1505m, 1461w, 1388vs, 1307m, 985m.

Refinement

H atoms attached to C atoms were placed at calculated positions and refined as riding atoms, with C—H = 0.93 (CH) and 0.97 (CH2) Å and with Uiso(H) = 1.2Ueq(C). The carboxylic H atom (H4B) was located from a difference Fourier map and refined isotropically.

Figures

Fig. 1.
The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (i) -x, y, -z + 1/2.]
Fig. 2.
One-dimensional chain structure connected through intermolecular O—H···O hydrogen bonds (dashed lines). [Symmetry code: (ii) x - 1/2, -y + 3/2, z - 1/2.]

Crystal data

[ZnCl2(C10H9NO4)2]F(000) = 1120
Mr = 550.63Dx = 1.708 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9202 reflections
a = 16.6247 (6) Åθ = 2.3–26.0°
b = 7.1973 (3) ŵ = 1.45 mm1
c = 18.8873 (7) ÅT = 296 K
β = 108.685 (1)°Block, colorless
V = 2140.81 (14) Å30.12 × 0.12 × 0.08 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer2450 independent reflections
Radiation source: fine-focus sealed tube2309 reflections with I > 2σ(I)
graphiteRint = 0.019
[var phi] and ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2001)h = −21→20
Tmin = 0.845, Tmax = 0.893k = −9→8
27422 measured reflectionsl = −24→23

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 1.06w = 1/[σ2(Fo2) + (0.0424P)2 + 2.553P] where P = (Fo2 + 2Fc2)/3
2450 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = −0.23 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Zn10.00000.21438 (4)0.25000.02879 (10)
C10.10900 (11)0.5110 (3)0.25776 (10)0.0324 (4)
C20.14353 (12)0.6811 (3)0.22916 (10)0.0360 (4)
H2A0.11390.79040.23790.043*
H2B0.20320.69530.25760.043*
C30.20158 (11)0.6192 (3)0.12864 (11)0.0370 (4)
H3A0.25250.58830.16490.044*
C40.19519 (13)0.6114 (3)0.05458 (12)0.0432 (4)
H4A0.24130.57340.04050.052*
C50.12009 (13)0.6600 (3)0.00115 (11)0.0395 (4)
H5A0.11550.6563−0.04920.047*
C60.06027 (11)0.7173 (2)0.09822 (10)0.0318 (4)
H6A0.01460.75110.11370.038*
C70.05107 (12)0.7146 (2)0.02242 (10)0.0323 (4)
C8−0.02829 (13)0.7712 (3)−0.03508 (10)0.0371 (4)
H8A−0.02730.7784−0.08400.044*
C9−0.10021 (13)0.8126 (3)−0.02414 (11)0.0401 (4)
H9A−0.10450.80610.02370.048*
C10−0.17521 (12)0.8700 (3)−0.08844 (10)0.0380 (4)
N10.13464 (9)0.6713 (2)0.14914 (8)0.0290 (3)
O10.06462 (9)0.39902 (19)0.21043 (7)0.0371 (3)
O20.12548 (10)0.5002 (2)0.32652 (7)0.0509 (4)
O3−0.17174 (10)0.9091 (3)−0.14938 (9)0.0574 (4)
O4−0.24415 (10)0.8769 (3)−0.07066 (9)0.0592 (5)
H4B−0.290 (2)0.919 (5)−0.1137 (19)0.091 (11)*
Cl10.07978 (3)0.02552 (6)0.34083 (2)0.03619 (12)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn10.03138 (16)0.03059 (16)0.02483 (15)0.0000.00960 (11)0.000
C10.0285 (8)0.0387 (9)0.0288 (8)−0.0027 (7)0.0075 (6)0.0018 (7)
C20.0417 (9)0.0378 (9)0.0263 (8)−0.0084 (8)0.0076 (7)−0.0012 (7)
C30.0288 (8)0.0389 (9)0.0422 (9)0.0025 (7)0.0099 (7)0.0063 (8)
C40.0391 (10)0.0484 (11)0.0485 (11)0.0031 (8)0.0231 (8)0.0044 (9)
C50.0492 (11)0.0384 (9)0.0343 (9)−0.0016 (8)0.0183 (8)0.0024 (8)
C60.0289 (8)0.0313 (8)0.0345 (9)0.0009 (6)0.0090 (7)0.0001 (7)
C70.0356 (9)0.0271 (8)0.0308 (8)−0.0020 (6)0.0059 (7)0.0030 (6)
C80.0411 (10)0.0382 (9)0.0283 (8)−0.0014 (8)0.0060 (7)0.0027 (7)
C90.0447 (10)0.0434 (10)0.0292 (9)0.0027 (8)0.0077 (8)−0.0009 (8)
C100.0422 (10)0.0332 (9)0.0329 (9)0.0023 (7)0.0040 (7)−0.0018 (7)
N10.0304 (7)0.0282 (6)0.0268 (7)−0.0021 (5)0.0069 (5)0.0026 (5)
O10.0436 (7)0.0394 (7)0.0300 (6)−0.0126 (6)0.0142 (5)−0.0051 (5)
O20.0545 (9)0.0663 (10)0.0266 (6)−0.0263 (8)0.0056 (6)0.0030 (6)
O30.0447 (8)0.0801 (12)0.0441 (8)0.0034 (8)0.0094 (7)0.0092 (8)
O40.0445 (8)0.0929 (14)0.0360 (8)0.0210 (9)0.0070 (6)0.0123 (8)
Cl10.0369 (2)0.0387 (2)0.0321 (2)0.00658 (17)0.00991 (17)0.00704 (16)

Geometric parameters (Å, °)

Zn1—O11.9983 (13)C5—C71.388 (3)
Zn1—Cl12.2566 (4)C5—H5A0.9300
C1—O21.241 (2)C6—N11.342 (2)
C1—O11.253 (2)C6—C71.390 (3)
C1—C21.522 (3)C6—H6A0.9300
C2—N11.472 (2)C7—C81.473 (2)
C2—H2A0.9700C8—C91.311 (3)
C2—H2B0.9700C8—H8A0.9300
C3—N11.343 (2)C9—C101.493 (3)
C3—C41.370 (3)C9—H9A0.9300
C3—H3A0.9300C10—O31.204 (3)
C4—C51.376 (3)C10—O41.294 (3)
C4—H4A0.9300O4—H4B0.97 (4)
O1i—Zn1—O196.63 (8)C4—C5—H5A120.0
O1i—Zn1—Cl1i115.43 (4)C7—C5—H5A120.0
O1—Zn1—Cl1i111.82 (4)N1—C6—C7120.43 (17)
O1i—Zn1—Cl1111.82 (4)N1—C6—H6A119.8
O1—Zn1—Cl1115.43 (4)C7—C6—H6A119.8
Cl1i—Zn1—Cl1105.92 (3)C5—C7—C6118.26 (17)
O2—C1—O1126.04 (17)C5—C7—C8119.55 (17)
O2—C1—C2116.10 (16)C6—C7—C8122.18 (17)
O1—C1—C2117.82 (15)C9—C8—C7126.40 (18)
N1—C2—C1113.62 (15)C9—C8—H8A116.8
N1—C2—H2A108.8C7—C8—H8A116.8
C1—C2—H2A108.8C8—C9—C10120.04 (18)
N1—C2—H2B108.8C8—C9—H9A120.0
C1—C2—H2B108.8C10—C9—H9A120.0
H2A—C2—H2B107.7O3—C10—O4123.81 (18)
N1—C3—C4120.36 (17)O3—C10—C9123.98 (19)
N1—C3—H3A119.8O4—C10—C9112.19 (17)
C4—C3—H3A119.8C6—N1—C3121.35 (16)
C3—C4—C5119.60 (18)C6—N1—C2119.36 (15)
C3—C4—H4A120.2C3—N1—C2119.28 (15)
C5—C4—H4A120.2C1—O1—Zn1115.16 (11)
C4—C5—C7119.98 (18)C10—O4—H4B109 (2)
O2—C1—C2—N1170.27 (17)C8—C9—C10—O4169.7 (2)
O1—C1—C2—N1−12.1 (2)C7—C6—N1—C3−1.0 (3)
N1—C3—C4—C51.0 (3)C7—C6—N1—C2178.06 (16)
C3—C4—C5—C7−0.7 (3)C4—C3—N1—C6−0.2 (3)
C4—C5—C7—C6−0.4 (3)C4—C3—N1—C2−179.18 (18)
C4—C5—C7—C8178.33 (19)C1—C2—N1—C682.1 (2)
N1—C6—C7—C51.2 (3)C1—C2—N1—C3−98.9 (2)
N1—C6—C7—C8−177.45 (16)O2—C1—O1—Zn111.0 (3)
C5—C7—C8—C9174.5 (2)C2—C1—O1—Zn1−166.35 (13)
C6—C7—C8—C9−6.8 (3)O1i—Zn1—O1—C157.77 (12)
C7—C8—C9—C10179.31 (18)Cl1i—Zn1—O1—C1178.59 (12)
C8—C9—C10—O3−11.8 (3)Cl1—Zn1—O1—C1−60.24 (14)

Symmetry codes: (i) −x, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O4—H4B···O2ii0.97 (4)1.60 (4)2.560 (2)169 (3)

Symmetry codes: (ii) x−1/2, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2249).

References

  • Beatty, A. M. (2003). Coord. Chem. Rev 246, 131–143.
  • Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  • Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Liu, N., Wang, Y.-Q., Gao, E.-Q., Chen, Z.-X. & Weng, L.-H. (2008). CrystEngComm, 10, 915–922.
  • Mao, J.-G., Zhang, H.-J., Ni, J.-Z., Wang, S.-B. & Mark, T. C. W. (1999). Polyhedron, 18, 1519–1525.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Steiner, T. (2002). Angew. Chem. Int. Ed 41, 48–76.
  • Sun, W.-W., Tian, C.-Y., Jing, X.-H., Wang, Y.-Q. & Gao, E.-Q. (2009). Chem. Commun. pp. 4741–4743. [PubMed]
  • Wu, A.-Q., Li, Y., Zheng, F.-K., Guo, G.-C. & Huang, J.-S. (2006). Cryst. Growth Des. 6, 444–450.
  • Zhang, X., Guo, G.-G., Zheng, F.-K., Zhou, G.-W., Mao, J.-G., Dong, Z.-C., Huang, J.-S. & Mark, T. C. W. (2002). J. Chem. Soc. Dalton Trans. pp. 1344–1349.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography