PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): o3077.
Published online 2009 November 14. doi:  10.1107/S160053680904673X
PMCID: PMC2971956

Methyl 2-allyl-4-hydr­oxy-2H-1,2-benzothia­zine-3-carboxyl­ate 1,1-dioxide

Abstract

In the title compound, C13H13NO5S, the thia­zine ring adopts a distorted half-chair conformation. Intra­molecular O—H(...)O and C—H(...)O hydrogen bonds give rise to two six-membered hydrogen bonded rings. In the crystal, mol­ecules are linked through weak inter­molecular C—H(...)O hydrogen bonds, resulting in a zigzag chain lying along the c axis.

Related literature

For the syntheses of related compounds, see: Braun (1923 [triangle]); Zia-ur-Rehman et al. (2005 [triangle]). For the biological activity of benzothia­zines, see: Zia-ur-Rehman et al. (2006 [triangle], 2009 [triangle]). For related structures, see: Arshad et al. (2009 [triangle]); Fabiola et al. (1998 [triangle]); Zia-ur-Rehman et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o3077-scheme1.jpg

Experimental

Crystal data

  • C13H13NO5S
  • M r = 295.30
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-o3077-efi1.jpg
  • a = 12.4289 (10) Å
  • b = 8.3706 (8) Å
  • c = 13.0132 (11) Å
  • V = 1353.9 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.26 mm−1
  • T = 296 K
  • 0.45 × 0.11 × 0.07 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.893, T max = 0.982
  • 8404 measured reflections
  • 2808 independent reflections
  • 1763 reflections with I > 2σ(I)
  • R int = 0.044

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057
  • wR(F 2) = 0.103
  • S = 1.06
  • 2808 reflections
  • 183 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.18 e Å−3
  • Δρmin = −0.23 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1046 Friedel pairs
  • Flack parameter: 0.07 (11)

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]) and Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680904673X/is2483sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680904673X/is2483Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the Higher Education Commission for a grant to purchase the diffractometer and PCSIR laboratories complex, Lahore for providing necessary chemicals and laboratory facilities.

supplementary crystallographic information

Comment

Benzothiazine1,1-dioxides are familiar for their different type of biological activities (Zia-ur-Rehman et al., 2006) and have been synthesized continuously since the very first synthesis in 1923 (Braun, 1923). In continuation of our work on he synthesis of various bioactive benzothiazines (Zia-ur-Rehman et al., 2005, 2009), we herein report the crystal structure of the title compound (I), thiazine ring exhibits a distorted half-chair conformation with S1/C1/C6/C7 atoms lying in a plane and N1 showing significant departure from the plane due to its pyramidal geometry projecting the allyl group approximately perpendicular to the ring (Fig. 1). Like previously reported crystal structures of various 1,2-benzothiazine 1,1-dioxide derivatives (Arshad et al., 2009; Fabiola et al., 1998; Zia-ur-Rehman et al., 2007), the enolic hydrogen on O3 is involved in intramolecular hydrogen bonding (Table1). In addition, C11—H11A···O5 hydrogen bond gives rise to another six-membered hydrogen ring in the molecule while C7—C8 bond length [1.338 (5) Å] (very close to normal C—C bond; 1.36 Å) indicates a partial double-bond character indicating the dominance of enolic form in the molecule. The C1—S1 bond distance [1.746 (4) Å] is as expected for typical C(sp2)—S bond (1.751 Å). Each molecule is linked to neighbouring molecules via weak C—H···O=S interactions giving rise to zigzag chains along the c axis (Fig. 2).

Experimental

Allyl iodide (5.04 g, 30.0 mmol) was added drop wise to the mixture of methyl 4-hydroxy-2H-1,2-benzothiazine-3-carboxylate-1,1-dioxide (3.83 g, 15.0 mmol), anhydrous potassium carbonate (1.68 g, 30.0 mmol) and dimethylformamide (20 ml) in a round bottom flask. Contents were stirred at room temperature for 7 h under nitrogen atmosphere and poured over ice cooled water (300 ml) resulting in an immediate formation of a white solid, which was filtered and washed with cold water. Single crystals were obtained by re-crystallization from a methanol solution

Refinement

All hydrogen atoms were positions geometrically and treated as riding on their parent atoms. The following distances were used: methyl C—H = 0.96 Å, methylene C—H = 0.97 Å, aromatic C—H = 0.93 Å and hydroxyl O—H = 0.82 Å. Uiso(H) was set to 1.2Ueq of the parent atoms or 1.5Ueq for methyl and hydroxyl groups. Large thermal displacement parameters for the terminal carbon atoms (C12 and C13) are observed but the disorder produce was not resolved.

Figures

Fig. 1.
The molecular structure of (I), with displacement ellipsoids at the 50% probability level.
Fig. 2.
Perspective view of the crystal packing showing O—H···O and C—H···O hydrogen-bonded interactions (dashed lines). H atoms not involved in hydrogen bonding have been omitted for clarity.

Crystal data

C13H13NO5SF(000) = 616
Mr = 295.30Dx = 1.449 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 1619 reflections
a = 12.4289 (10) Åθ = 3.1–21.7°
b = 8.3706 (8) ŵ = 0.26 mm1
c = 13.0132 (11) ÅT = 296 K
V = 1353.9 (2) Å3Needle, colourless
Z = 40.45 × 0.11 × 0.07 mm

Data collection

Bruker APEXII CCD area-detector diffractometer2808 independent reflections
Radiation source: fine-focus sealed tube1763 reflections with I > 2σ(I)
graphiteRint = 0.044
[var phi] and ω scansθmax = 28.3°, θmin = 2.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −16→16
Tmin = 0.893, Tmax = 0.982k = −11→10
8404 measured reflectionsl = −17→9

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.103w = 1/[σ2(Fo2) + (0.0381P)2 + 0.1044P] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2808 reflectionsΔρmax = 0.18 e Å3
183 parametersΔρmin = −0.23 e Å3
1 restraintAbsolute structure: Flack (1983), 1046 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.07 (11)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S1−0.11229 (6)0.28643 (12)0.49624 (9)0.0550 (3)
O1−0.12270 (18)0.1530 (4)0.5634 (3)0.0733 (9)
O2−0.19486 (15)0.4041 (3)0.4937 (3)0.0714 (8)
O30.18469 (19)0.0795 (3)0.4129 (2)0.0669 (9)
H3O0.23030.09630.45710.100*
O40.26461 (18)0.2122 (3)0.5724 (2)0.0658 (8)
O50.16238 (19)0.3843 (3)0.6600 (2)0.0612 (7)
N10.0004 (2)0.3754 (3)0.5229 (2)0.0490 (9)
C1−0.0885 (3)0.2109 (4)0.3733 (3)0.0487 (10)
C2−0.1708 (3)0.1997 (5)0.3013 (4)0.0647 (12)
H2−0.23960.23600.31680.078*
C3−0.1488 (4)0.1344 (5)0.2074 (4)0.0737 (13)
H3A−0.20340.12470.15900.088*
C4−0.0462 (4)0.0828 (5)0.1837 (4)0.0721 (12)
H4−0.03190.04060.11910.087*
C50.0348 (3)0.0935 (5)0.2553 (3)0.0602 (12)
H50.10320.05640.23910.072*
C60.0156 (3)0.1588 (4)0.3509 (3)0.0468 (9)
C70.1002 (3)0.1766 (4)0.4281 (3)0.0467 (9)
C80.0945 (2)0.2785 (4)0.5071 (4)0.0450 (9)
C90.1819 (3)0.2889 (4)0.5819 (3)0.0502 (9)
C100.2475 (4)0.3995 (6)0.7344 (4)0.0867 (14)
H10A0.30700.45550.70420.130*
H10B0.27060.29510.75570.130*
H10C0.22180.45790.79300.130*
C110.0106 (3)0.5495 (4)0.5090 (3)0.0595 (10)
H11A0.06950.58780.55130.071*
H11B−0.05480.60040.53310.071*
C120.0304 (4)0.5986 (7)0.4006 (5)0.1008 (19)
H120.07320.52710.36420.121*
C130.0036 (6)0.7061 (11)0.3530 (7)0.161 (3)
H13A−0.03950.78450.38260.194*
H13B0.02490.71540.28480.194*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0376 (4)0.0683 (6)0.0593 (6)0.0050 (4)0.0069 (5)0.0078 (7)
O10.0553 (15)0.088 (2)0.076 (2)−0.0060 (14)0.0169 (15)0.0296 (19)
O20.0418 (12)0.0919 (19)0.080 (2)0.0220 (12)0.0017 (16)−0.0075 (19)
O30.0477 (15)0.0674 (19)0.086 (3)0.0147 (14)−0.0021 (13)−0.0186 (15)
O40.0474 (14)0.0682 (17)0.082 (2)0.0146 (13)−0.0103 (13)−0.0130 (18)
O50.0537 (14)0.0741 (19)0.0557 (19)0.0121 (13)−0.0078 (13)−0.0097 (16)
N10.0439 (14)0.0501 (18)0.053 (3)0.0077 (13)0.0021 (12)0.0005 (16)
C10.046 (2)0.037 (2)0.064 (3)−0.0039 (16)−0.0024 (18)0.006 (2)
C20.055 (2)0.055 (3)0.084 (4)0.005 (2)−0.012 (2)−0.001 (3)
C30.074 (3)0.072 (3)0.075 (4)0.001 (2)−0.025 (2)−0.010 (3)
C40.092 (3)0.064 (3)0.060 (3)−0.005 (2)−0.011 (3)−0.016 (2)
C50.057 (2)0.052 (3)0.072 (4)−0.0030 (18)0.001 (2)−0.013 (2)
C60.0473 (19)0.039 (2)0.054 (3)−0.0024 (15)−0.0026 (18)−0.0014 (19)
C70.0384 (18)0.043 (2)0.059 (3)0.0018 (15)0.0066 (18)0.0058 (19)
C80.0376 (15)0.0445 (19)0.053 (3)0.0037 (15)0.005 (2)0.001 (2)
C90.048 (2)0.046 (2)0.057 (3)0.0034 (18)0.0015 (19)0.005 (2)
C100.077 (2)0.113 (4)0.070 (3)0.024 (3)−0.031 (2)−0.027 (3)
C110.061 (2)0.050 (2)0.068 (3)0.0065 (17)−0.002 (2)0.001 (2)
C120.093 (4)0.070 (4)0.139 (6)0.008 (3)0.010 (3)0.036 (4)
C130.211 (9)0.131 (7)0.142 (7)−0.031 (6)−0.035 (6)0.050 (5)

Geometric parameters (Å, °)

S1—O21.423 (2)C4—C51.375 (5)
S1—O11.424 (3)C4—H40.9300
S1—N11.625 (3)C5—C61.380 (5)
S1—C11.746 (4)C5—H50.9300
O3—C71.343 (4)C6—C71.462 (5)
O3—H3O0.8200C7—C81.338 (5)
O4—C91.218 (4)C8—C91.461 (5)
O5—C91.315 (4)C10—H10A0.9600
O5—C101.440 (5)C10—H10B0.9600
N1—C81.438 (4)C10—H10C0.9600
N1—C111.473 (4)C11—C121.490 (7)
C1—C21.390 (5)C11—H11A0.9700
C1—C61.396 (5)C11—H11B0.9700
C2—C31.366 (6)C12—C131.142 (8)
C2—H20.9300C12—H120.9300
C3—C41.380 (6)C13—H13A0.9300
C3—H3A0.9300C13—H13B0.9300
O2—S1—O1119.46 (17)C1—C6—C7119.4 (3)
O2—S1—N1108.03 (15)C8—C7—O3122.7 (3)
O1—S1—N1107.87 (16)C8—C7—C6123.7 (3)
O2—S1—C1110.57 (18)O3—C7—C6113.5 (3)
O1—S1—C1107.1 (2)C7—C8—N1120.8 (3)
N1—S1—C1102.48 (15)C7—C8—C9120.7 (3)
C7—O3—H3O109.5N1—C8—C9118.4 (3)
C9—O5—C10116.0 (3)O4—C9—O5123.6 (3)
C8—N1—C11118.1 (3)O4—C9—C8121.9 (4)
C8—N1—S1114.3 (2)O5—C9—C8114.4 (3)
C11—N1—S1120.1 (2)O5—C10—H10A109.5
C2—C1—C6121.4 (4)O5—C10—H10B109.5
C2—C1—S1121.2 (3)H10A—C10—H10B109.5
C6—C1—S1117.5 (3)O5—C10—H10C109.5
C3—C2—C1118.8 (4)H10A—C10—H10C109.5
C3—C2—H2120.6H10B—C10—H10C109.5
C1—C2—H2120.6N1—C11—C12113.8 (4)
C2—C3—C4120.7 (4)N1—C11—H11A108.8
C2—C3—H3A119.7C12—C11—H11A108.8
C4—C3—H3A119.7N1—C11—H11B108.8
C5—C4—C3120.3 (4)C12—C11—H11B108.8
C5—C4—H4119.9H11A—C11—H11B107.7
C3—C4—H4119.9C13—C12—C11133.1 (7)
C4—C5—C6120.7 (4)C13—C12—H12113.5
C4—C5—H5119.7C11—C12—H12113.5
C6—C5—H5119.7C12—C13—H13A120.0
C5—C6—C1118.1 (3)C12—C13—H13B120.0
C5—C6—C7122.4 (3)H13A—C13—H13B120.0
O2—S1—N1—C8−167.6 (2)S1—C1—C6—C7−2.9 (5)
O1—S1—N1—C862.0 (3)C5—C6—C7—C8159.4 (4)
C1—S1—N1—C8−50.8 (3)C1—C6—C7—C8−19.9 (6)
O2—S1—N1—C11−18.4 (4)C5—C6—C7—O3−21.1 (5)
O1—S1—N1—C11−148.8 (3)C1—C6—C7—O3159.6 (3)
C1—S1—N1—C1198.4 (3)O3—C7—C8—N1−177.3 (3)
O2—S1—C1—C2−31.7 (4)C6—C7—C8—N12.2 (6)
O1—S1—C1—C2100.0 (3)O3—C7—C8—C90.0 (6)
N1—S1—C1—C2−146.6 (3)C6—C7—C8—C9179.5 (3)
O2—S1—C1—C6149.8 (3)C11—N1—C8—C7−112.6 (4)
O1—S1—C1—C6−78.6 (3)S1—N1—C8—C737.3 (4)
N1—S1—C1—C634.8 (3)C11—N1—C8—C970.1 (4)
C6—C1—C2—C30.8 (6)S1—N1—C8—C9−140.1 (3)
S1—C1—C2—C3−177.7 (3)C10—O5—C9—O42.4 (5)
C1—C2—C3—C4−1.0 (6)C10—O5—C9—C8−179.0 (3)
C2—C3—C4—C51.3 (7)C7—C8—C9—O43.8 (6)
C3—C4—C5—C6−1.3 (6)N1—C8—C9—O4−178.8 (3)
C4—C5—C6—C11.1 (6)C7—C8—C9—O5−174.8 (3)
C4—C5—C6—C7−178.2 (4)N1—C8—C9—O52.6 (5)
C2—C1—C6—C5−0.8 (6)C8—N1—C11—C1268.0 (4)
S1—C1—C6—C5177.7 (3)S1—N1—C11—C12−80.1 (4)
C2—C1—C6—C7178.5 (3)N1—C11—C12—C13144.7 (8)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3O···O40.821.842.555 (4)146
C11—H11A···O50.972.503.055 (4)116
C3—H3A···O1i0.932.513.406 (6)163

Symmetry codes: (i) −x−1/2, y, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2483).

References

  • Arshad, M. N., Zia-ur-Rehman, M. & Khan, I. U. (2009). Acta Cryst. E65, o2596. [PMC free article] [PubMed]
  • Braun, J. (1923). Chem. Ber 56, 2332–2343.
  • Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Fabiola, G. F., Pattabhi, V., Manjunatha, S. G., Rao, G. V. & Nagarajan, K. (1998). Acta Cryst. C54, 2001–2003.
  • Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  • Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Zia-ur-Rehman, M., Anwar, J., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull 54, 1175–1178. [PubMed]
  • Zia-ur-Rehman, M., Choudary, J. A. & Ahmad, S. (2005). Bull. Korean Chem. Soc 26, 1771–1175.
  • Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem 44, 1311–1316. [PubMed]
  • Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Weaver, G. W. (2007). Acta Cryst. E63, o4215–o4216.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography