PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): o3118.
Published online 2009 November 18. doi:  10.1107/S1600536809048156
PMCID: PMC2971955

N′-[(2E)-3-Phenyl­prop-2-eno­yl]benzo­hydrazide

Abstract

In the title compound, C16H14N2O2, the conformation about the C=C bond is E, and the two amide groups are effectively orthogonal [the C—N—N—C torsion angle is 104.5 (2)°]. In the crystal structure, the amide groups groups associate via N–H(...)O hydrogen bonding, forming supra­molecular tapes with undulating topology along the c-axis direction.

Related literature

For the biological activity of trans-cinnamic acid derivatives, see: Bezerra et al. (2006 [triangle]); Chung & Shin (2007 [triangle]); Naz et al. (2006 [triangle]); Rastogi et al. (1998 [triangle]); Reddy et al. (1995 [triangle]). For recent studies directed towards developing drugs for the treatment of tuberculosis, see: Carvalho et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o3118-scheme1.jpg

Experimental

Crystal data

  • C16H14N2O2
  • M r = 266.29
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o3118-efi1.jpg
  • a = 15.9696 (7) Å
  • b = 10.4563 (5) Å
  • c = 8.3162 (2) Å
  • β = 102.072 (3)°
  • V = 1357.95 (9) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 120 K
  • 0.48 × 0.20 × 0.08 mm

Data collection

  • Nonius KappaCCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003 [triangle]) T min = 0.636, T max = 0.746
  • 17862 measured reflections
  • 3110 independent reflections
  • 2010 reflections with I > 2σ(I)
  • R int = 0.086

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053
  • wR(F 2) = 0.172
  • S = 1.10
  • 3110 reflections
  • 187 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.45 e Å−3
  • Δρmin = −0.42 e Å−3

Data collection: COLLECT (Hooft, 1998 [triangle]); cell refinement: DENZO (Otwinowski & Minor, 1997 [triangle]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks general, I. DOI: 10.1107/S1600536809048156/hg2591sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809048156/hg2591Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil).

supplementary crystallographic information

Comment

Tuberculosis (TB) remains among the world's great public health challenges. Worldwide resurgence of TB is due to two major problems: the AIDS epidemic, which started in the mid-1980's, and the outbreak of multi-drug resistant (MDR) TB. The deadly combination of TB and HIV has led to a quadrupling of TB cases in several African and Asian countries [http://www.who.int/tdr/diseases/tb/default.htm]. MDR-TB, defined as resistance to at least isoniazid and rifamycin, two current first-line drugs, has increased morbidity and mortality with an overall increase in health care costs. The first-line treatment has some disadvantages such as important side-effects and weak sterility problems, and must be administered for 6–9 months. When standard treatments fail, second-line TB drugs are used, but these drugs have a far lower efficacy and require even longer administration periods (18–24 months) with higher cost (US $2500–3000 per treatment), higher rates of adverse effects, and low cure rates (around 60%). It is estimated that 4% of all worldwide TB patients are resistant to at least one of the current first-line drugs. TB is responsible for 20% of all deaths in adults, and each year there are about nine million new cases, of which 15% are children, and two million of deaths, of which 450.000 are children. Due to the increase of MDR-TB and AIDS cases worldwide and the lack of new drugs, there is an urgent need for new drugs to fight this disease. In our continuing research for new potent and anti-malarial agents, we reported on a new class of isonicotinic and benzoic acid N'-(3-phenyl-acryloyl)-hydrazide derivatives as attractive anti-tubercular agents (Carvalho et al., 2008) and now report the structure of N'-[(2E)-3-phenylprop-2-enoyl]benzohydrazide, (I). The choice of trans-cinnamic acid derivatives in this study follows on from earlier reports of their significant biological activities (Bezerra et al., 2006; Chung & Shin, 2007; Naz et al., 2006; Rastogi et al., 1998; Reddy et al., 1995).

In (I), the conformation about the C7═C8 bond is E, Fig. 1. There is significant twisting in the molecule, in particular about about the central N1–N2 bond as seen in the value of the C9/N1/N2/C10 torsion angle of 104.5 (2) °. This has the consequence that the amide groups are effectively orthogonal to each other, a feature that facilitates the formation of N–H···O hydrogen bond leading to the formation of undulating supramolecular tapes in the c direction, Fig. 2 and Table 1.

Experimental

4-Nitrophenyl (2E)-3-phenyl-2-propenoate (2.0 g), prepared by successive treatments of trans-cinnamic acid with thionyl chloride and 4-nitrophenol, was added to a solution of PhCONHNH2 (1.1 equiv.) in pyridine (40 ml). After refluxing the reaction mixture for 6 h, the excess of pyridine was removed under vacuum and water (20 ml) was added. The precipitate was filtered under vacuum, and washed with water to furnish (I) in 78% yield. The crystals used in the structure determination were grown from ethanol solution, m. pt. 482–483 K. 1H NMR (500.00 MHz, DMSO-d6) δ: 6.78 (1H, d, J = 16.0 Hz, Ph—CH), 7.42 (3H, m, aryl-H), 7.52 (2H, m, aryl-H), 7.60 (1H, d, J = 16.0 Hz, CHCO), 7.63 (3H, m, aryl-H), 7.93 (2H, d, J = 7.5 Hz, aryl-H, 10.25 (1H, s, NH), 10.56 (1H, s, NH) p.p.m. 13C NMR (125 MHz, DMSO-d6) δ: 165.48, 164.45, 140.34, 134.59, 132.45, 131.92, 129.91, 129.07, 127.78, 121.52, 119.45 p.p.m.

Refinement

The C-bound H atoms were geometrically placed (C–H = 0.95 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The positions of the amide-N H atoms were refined with Uiso(H) = 1.2Ueq(N), see Table 1 for distances.

Figures

Fig. 1.
Molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
Fig. 2.
Supramolecular tape with undulating topology in (I). The N–H···O hydrogen bonding is shown as orange dashed lines

Crystal data

C16H14N2O2F(000) = 560
Mr = 266.29Dx = 1.303 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6527 reflections
a = 15.9696 (7) Åθ = 2.9–27.5°
b = 10.4563 (5) ŵ = 0.09 mm1
c = 8.3162 (2) ÅT = 120 K
β = 102.072 (3)°Block, light-red
V = 1357.95 (9) Å30.48 × 0.20 × 0.08 mm
Z = 4

Data collection

Nonius KappaCCD area-detector diffractometer3110 independent reflections
Radiation source: Enraf–Nonius FR591 rotating anode2010 reflections with I > 2σ(I)
10 cm confocal mirrorsRint = 0.086
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.2°
[var phi] and ω scansh = −20→20
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)k = −13→13
Tmin = 0.636, Tmax = 0.746l = −9→10
17862 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.172H atoms treated by a mixture of independent and constrained refinement
S = 1.10w = 1/[σ2(Fo2) + (0.0894P)2] where P = (Fo2 + 2Fc2)/3
3110 reflections(Δ/σ)max < 0.001
187 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = −0.42 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.20786 (9)0.62832 (14)0.42536 (16)0.0272 (4)
O20.36866 (9)0.61547 (14)0.11169 (15)0.0249 (4)
N10.25365 (10)0.74825 (18)0.2337 (2)0.0239 (4)
HN10.2442 (14)0.779 (2)0.132 (3)0.029*
N20.33940 (11)0.73943 (18)0.3148 (2)0.0248 (4)
HN20.3532 (14)0.774 (2)0.410 (3)0.030*
C1−0.04530 (13)0.6129 (2)0.1175 (2)0.0233 (5)
C2−0.07212 (14)0.6812 (2)−0.0287 (3)0.0305 (5)
H2−0.03220.7330−0.06920.037*
C3−0.15601 (14)0.6745 (2)−0.1150 (3)0.0328 (6)
H3−0.17330.7219−0.21380.039*
C4−0.21495 (13)0.5991 (2)−0.0583 (3)0.0291 (5)
H4−0.27250.5948−0.11770.035*
C5−0.18951 (14)0.5302 (2)0.0851 (3)0.0301 (5)
H5−0.22970.47820.12440.036*
C6−0.10529 (13)0.5366 (2)0.1725 (2)0.0264 (5)
H6−0.08840.48850.27090.032*
C70.04268 (13)0.6196 (2)0.2143 (2)0.0236 (5)
H70.05500.56930.31150.028*
C80.10735 (12)0.6886 (2)0.1809 (2)0.0236 (5)
H80.09830.74120.08570.028*
C90.19296 (12)0.6835 (2)0.2911 (2)0.0211 (4)
C100.39296 (12)0.66689 (19)0.2472 (2)0.0203 (5)
C110.48306 (12)0.65355 (19)0.3422 (2)0.0208 (5)
C120.52237 (13)0.7406 (2)0.4602 (2)0.0226 (5)
H120.49130.81260.48590.027*
C130.60701 (13)0.7227 (2)0.5409 (2)0.0272 (5)
H130.63380.78260.62130.033*
C140.65253 (14)0.6170 (2)0.5038 (2)0.0280 (5)
H140.71050.60500.55820.034*
C150.61300 (13)0.5296 (2)0.3873 (2)0.0278 (5)
H150.64380.45690.36310.033*
C160.52891 (13)0.5473 (2)0.3060 (2)0.0255 (5)
H160.50240.48730.22550.031*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0249 (8)0.0309 (9)0.0232 (7)0.0004 (6)−0.0008 (6)0.0013 (6)
O20.0223 (8)0.0286 (9)0.0214 (7)−0.0042 (6)−0.0009 (5)−0.0019 (6)
N10.0140 (9)0.0337 (11)0.0212 (8)−0.0004 (8)−0.0030 (6)0.0011 (8)
N20.0164 (9)0.0348 (11)0.0202 (8)−0.0005 (8)−0.0033 (6)−0.0027 (8)
C10.0197 (11)0.0247 (12)0.0245 (10)0.0021 (9)0.0024 (8)−0.0015 (8)
C20.0213 (11)0.0354 (13)0.0335 (11)−0.0057 (10)0.0026 (9)0.0068 (10)
C30.0247 (12)0.0371 (14)0.0323 (12)−0.0049 (10)−0.0038 (9)0.0084 (10)
C40.0174 (11)0.0292 (13)0.0369 (12)0.0000 (9)−0.0029 (9)−0.0022 (9)
C50.0244 (12)0.0288 (12)0.0368 (12)−0.0087 (10)0.0056 (9)−0.0024 (10)
C60.0249 (11)0.0270 (12)0.0264 (10)−0.0020 (9)0.0031 (8)0.0006 (9)
C70.0216 (11)0.0270 (12)0.0212 (10)0.0030 (9)0.0025 (8)−0.0012 (8)
C80.0218 (11)0.0262 (11)0.0209 (10)0.0041 (9)0.0004 (8)−0.0011 (8)
C90.0183 (10)0.0222 (11)0.0213 (10)0.0015 (9)0.0005 (7)−0.0048 (8)
C100.0193 (11)0.0218 (11)0.0188 (10)−0.0031 (8)0.0014 (7)0.0041 (8)
C110.0181 (10)0.0231 (11)0.0204 (10)−0.0020 (8)0.0019 (7)0.0043 (8)
C120.0189 (10)0.0268 (12)0.0218 (9)−0.0014 (9)0.0037 (7)−0.0001 (8)
C130.0202 (11)0.0328 (13)0.0264 (10)−0.0028 (9)−0.0002 (8)−0.0034 (9)
C140.0181 (10)0.0357 (13)0.0274 (11)0.0019 (9)−0.0017 (8)0.0010 (9)
C150.0249 (12)0.0277 (12)0.0298 (11)0.0069 (9)0.0034 (8)0.0038 (9)
C160.0253 (12)0.0252 (12)0.0242 (10)−0.0008 (9)0.0015 (8)0.0003 (8)

Geometric parameters (Å, °)

O1—C91.235 (2)C6—H60.9500
O2—C101.235 (2)C7—C81.336 (3)
N1—C91.348 (3)C7—H70.9500
N1—N21.397 (2)C8—C91.479 (3)
N1—HN10.89 (2)C8—H80.9500
N2—C101.351 (3)C10—C111.496 (3)
N2—HN20.86 (2)C11—C121.388 (3)
C1—C61.395 (3)C11—C161.398 (3)
C1—C21.398 (3)C12—C131.390 (3)
C1—C71.467 (3)C12—H120.9500
C2—C31.383 (3)C13—C141.392 (3)
C2—H20.9500C13—H130.9500
C3—C41.384 (3)C14—C151.384 (3)
C3—H30.9500C14—H140.9500
C4—C51.379 (3)C15—C161.384 (3)
C4—H40.9500C15—H150.9500
C5—C61.390 (3)C16—H160.9500
C5—H50.9500
C9—N1—N2120.03 (17)C7—C8—C9120.44 (18)
C9—N1—HN1121.9 (14)C7—C8—H8119.8
N2—N1—HN1116.0 (14)C9—C8—H8119.8
C10—N2—N1118.56 (16)O1—C9—N1122.52 (17)
C10—N2—HN2124.2 (16)O1—C9—C8123.72 (18)
N1—N2—HN2117.0 (15)N1—C9—C8113.74 (17)
C6—C1—C2118.08 (18)O2—C10—N2121.24 (17)
C6—C1—C7119.48 (18)O2—C10—C11121.69 (17)
C2—C1—C7122.44 (19)N2—C10—C11117.06 (16)
C3—C2—C1120.8 (2)C12—C11—C16119.57 (18)
C3—C2—H2119.6C12—C11—C10123.71 (18)
C1—C2—H2119.6C16—C11—C10116.71 (18)
C2—C3—C4120.41 (19)C11—C12—C13120.21 (19)
C2—C3—H3119.8C11—C12—H12119.9
C4—C3—H3119.8C13—C12—H12119.9
C5—C4—C3119.58 (19)C12—C13—C14119.99 (19)
C5—C4—H4120.2C12—C13—H13120.0
C3—C4—H4120.2C14—C13—H13120.0
C4—C5—C6120.3 (2)C15—C14—C13119.76 (19)
C4—C5—H5119.9C15—C14—H14120.1
C6—C5—H5119.9C13—C14—H14120.1
C5—C6—C1120.80 (19)C14—C15—C16120.5 (2)
C5—C6—H6119.6C14—C15—H15119.8
C1—C6—H6119.6C16—C15—H15119.8
C8—C7—C1127.24 (19)C15—C16—C11119.97 (19)
C8—C7—H7116.4C15—C16—H16120.0
C1—C7—H7116.4C11—C16—H16120.0
C9—N1—N2—C10104.5 (2)C7—C8—C9—N1173.98 (19)
C6—C1—C2—C30.7 (3)N1—N2—C10—O24.4 (3)
C7—C1—C2—C3−178.7 (2)N1—N2—C10—C11−176.55 (16)
C1—C2—C3—C4−0.3 (4)O2—C10—C11—C12156.22 (19)
C2—C3—C4—C5−0.1 (3)N2—C10—C11—C12−22.8 (3)
C3—C4—C5—C60.1 (3)O2—C10—C11—C16−23.0 (3)
C4—C5—C6—C10.3 (3)N2—C10—C11—C16158.00 (18)
C2—C1—C6—C5−0.7 (3)C16—C11—C12—C130.5 (3)
C7—C1—C6—C5178.8 (2)C10—C11—C12—C13−178.68 (17)
C6—C1—C7—C8−179.0 (2)C11—C12—C13—C14−0.2 (3)
C2—C1—C7—C80.4 (3)C12—C13—C14—C15−0.5 (3)
C1—C7—C8—C9−179.37 (19)C13—C14—C15—C160.8 (3)
N2—N1—C9—O19.3 (3)C14—C15—C16—C11−0.5 (3)
N2—N1—C9—C8−172.41 (17)C12—C11—C16—C15−0.1 (3)
C7—C8—C9—O1−7.8 (3)C10—C11—C16—C15179.11 (17)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—HN1···O1i0.89 (2)1.95 (2)2.827 (2)168 (2)
N2—HN2···O2ii0.86 (2)2.01 (2)2.852 (2)168 (2)

Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) x, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2591).

References

  • Bezerra, D. P., Castro, F. O., Alves, A. P. N. N., Pessoa, C., Moraes, M. O., Silveira, E. R., Lima, M. A. S., Elmiro, F. J. M. & Costa-Lotufo, L. V. (2006). Braz. J. Med. Biol. Res. 39, 801–807. [PubMed]
  • Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  • Carvalho, S. R., de Silva, E. F., de Souza, M. V. N., Lourenço, M. C. S. & Vicente, F. R. (2008). Bioorg. Med. Chem. Lett. 18, 538–541. [PubMed]
  • Chung, H. S. & Shin, J. C. (2007). Food Chem. 104, 1670–1677.
  • Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
  • Naz, S., Ahmad, S., Rasool, S. A., Sayeed, S. A. & Siddiqi, R. (2006). Microb. Res. 161, 43–48. [PubMed]
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Rastogi, N., Goh, K. S., Horgen, L. & Barrow, W. W. (1998). FEMS Immunol. Med. Microbiol. 21, 149–157. [PubMed]
  • Reddy, V. M., Nadadhur, G., Daneluzzi, D., Dimova, V. & Gangadharam, P. R. J. (1995). Antimicrob. Agents Chemother. 39, 2320–2324. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2009). publCIF. In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography