PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): o3209.
Published online 2009 November 25. doi:  10.1107/S1600536809049745
PMCID: PMC2971952

4-(2-Hydroxy­ethyl)anilinium 3-carb­oxy-4-hydroxy­benzene­sulfonate monohydrate

Abstract

In the structure of the title compound, C8H12NO+·C7H5O6S·H2O, isolated from the reaction of 2-(4-amino­phen­yl)ethanol with 5-sulfosalicylic acid, the cations form head-to-tail hydrogen-bonded chains through C 1 1(9) anilinium N+—H(...)Ohydrox­yl inter­actions while the anions also form parallel but C 1 1(8)-linked chains through carboxylic acid O—H(...)Osulfonate inter­actions. These chains inter-associate through a number of N+—H(...)O and O—H(...)O bridging inter­actions, giving a two-dimensional array in the ab plane.

Related literature

For the structure of the 2-(4-amino­phen­yl)ethanol salt of 3,5-dinitro­benzoic acid, see: Smith & Wermuth (2009 [triangle]). For structures of 5-sulfosalicylic acid salts of aniline and substituted anilines, see: Bakasova et al. (1991 [triangle]); Smith (2005 [triangle]); Smith et al. (2005a [triangle],b [triangle], 2006 [triangle]). For hydrogen-bonding graph-set notation, see: Etter et al. (1990 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o3209-scheme1.jpg

Experimental

Crystal data

  • C8H12NO+·C7H5O6S·H2O
  • M r = 373.37
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o3209-efi1.jpg
  • a = 7.7412 (6) Å
  • b = 8.7977 (6) Å
  • c = 12.8330 (8) Å
  • α = 102.169 (6)°
  • β = 98.538 (6)°
  • γ = 101.366 (6)°
  • V = 820.97 (11) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.24 mm−1
  • T = 200 K
  • 0.40 × 0.40 × 0.20 mm

Data collection

  • Oxford Diffraction Gemini-S CCD-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.934, T max = 0.980
  • 10214 measured reflections
  • 3215 independent reflections
  • 2756 reflections with I > 2σ(I)
  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032
  • wR(F 2) = 0.087
  • S = 0.99
  • 3215 reflections
  • 258 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.30 e Å−3
  • Δρmin = −0.30 e Å−3

Data collection: CrysAlis Pro (Oxford Diffraction (2009 [triangle]); cell refinement: CrysAlis Pro; data reduction: CrysAlis Pro; program(s) used to solve structure: SIR92 (Altomare et al., 1994 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]) within WinGX (Farrugia, 1999 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809049745/tk2580sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809049745/tk2580Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge financial support from the Australian Research Council and the School of Physical and Chemical Sciences, Queensland University of Technology.

supplementary crystallographic information

Comment

We recently described the hydrogen bonding in the 1:1 proton-transfer salt of 3,5-dinitrobenzoic acid with 2-(4-aminophenyl)ethanol (Smith & Wermuth, 2009), which was the first reported structure of any compound of this aromatic Lewis base. Because of the common use of 3-carboxy-4-hydroxybenzenesulfonic acid (5-sulfosalicylic acid, 5-SSA) in the formation of stable crystalline compounds of Lewis bases, in particular the analogous aniline (Bakasova et al., 1991), 3-substituted anilines 3-methoxyaniline (Smith et al., 2006), 3-carboxyaniline (Smith, 2005), and the 4-X-substituted anilines: X = F, Cl, Br (Smith et al., 2005a) and X = CO2H (Smith et al., 2005b). We therefore carried out the 1:1 stoichiometric reaction of 5-SSA with this aniline-substituted alcohol in 50% ethanol-water. The result was a 1:1 salt 4-(2-hydroxyethyl)anilinium 3-carboxy-4-hydroxybenzenesulfonate monohydrate, C8H12NO+ C7H5O6S-. H2O, (I), the structure of which is reported here.

With (I) (Fig. 1), proton transfer occurs and the resulting anilinium group forms head-to-tail hydrogen-bonded cation chains through anilinium N+–H···Ohydroxyl interactions [graph set C9 (Etter et al., 1990)]. The anions also form similar head-to-tail hydrogen-bonded chains through carboxylic acid O–H···Osulfonate interactions (graph set C8) and lie parallel to the cation chains, extending along the b direction. These chains associate through N+–H···Osulfonate, ···Ocarboxyl, ···Ohydroxyl and ···Owater interactions as well as through hydroxyl O–H···Osulfonate, water O–H···Osulfonate and O–H···Ocarboxyl bridging interactions (Table 1). The result is a 2-D array (Fig. 2) in which there are also very weak cation–anion aromatic ring π–π interactions [ring centroid separation, 3.8552 (10) Å].

In the 5-SSA anion, the carboxylic acid group is essentially co-planar with the benzene ring [torsion angle C6–C1–C11–O12, -178.40 (15)°] because of the presence of the common intramolecular phenol O–H···Ocarboxyl hydrogen bond [2.6302 (18) Å].

Experimental

Compound (I) was synthesized by heating together 1 mmol quantities of 2-(4-aminophenyl)ethanol with 3-carboxy-4-hydroxybenzenesulfonic acid in 50 ml of 50% ethanol–water under reflux for 10 minutes. After concentration to ca. 30 ml, partial room temperature evaporation of the hot-filtered solution gave pale-brown plates (m. p. 498 K).

Refinement

Hydrogen atoms involved in hydrogen-bonding interactions were located by difference methods and their positional and isotropic displacement parameters were refined (see Table 1 for distances). The H-atoms were included in the refinement in calculated positions [C–H(aliphatic) = 0.97 Å and C–H(aromatic) = 0.93 Å) using a riding model approximation, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
Molecular configuration and atom naming scheme for the substituted anilinium cation, the 5-SSA anion and the water molecule of solvation in (I). Inter-species hydrogen bonds are shown as dashed lines. Displacement ellipsoids are drawn at the 50% probability ...
Fig. 2.
The 2-D hydrogen-bonded array in (I) formed through interlinked hydrogen-bonded cation and anion chains extending in the ab plane. Hydrogen-bonding associations are shown as dashed lines. Non-interacting H atoms are omitted for clarity. For symmetry codes, ...

Crystal data

C8H12NO+·C7H5O6S·H2OZ = 2
Mr = 373.37F(000) = 392
Triclinic, P1Dx = 1.510 Mg m3
Hall symbol: -P 1Melting point: 498 K
a = 7.7412 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.7977 (6) ÅCell parameters from 4875 reflections
c = 12.8330 (8) Åθ = 3.2–28.8°
α = 102.169 (6)°µ = 0.24 mm1
β = 98.538 (6)°T = 200 K
γ = 101.366 (6)°Plate, pale brown
V = 820.97 (11) Å30.40 × 0.40 × 0.20 mm

Data collection

Oxford Diffraction Gemini-S CCD-detector diffractometer3215 independent reflections
Radiation source: Enhance (Mo) X-ray source2756 reflections with I > 2σ(I)
graphiteRint = 0.022
ω scansθmax = 26.0°, θmin = 3.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −9→9
Tmin = 0.934, Tmax = 0.980k = −10→10
10214 measured reflectionsl = −15→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 0.99w = 1/[σ2(Fo2) + (0.0575P)2 + 0.1198P] where P = (Fo2 + 2Fc2)/3
3215 reflections(Δ/σ)max = 0.001
258 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = −0.30 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O11A0.80608 (18)0.87360 (14)0.00089 (10)0.0341 (4)
N4A0.78541 (19)0.07130 (16)0.19112 (12)0.0234 (4)
C1A0.8163 (2)0.53103 (17)0.13072 (12)0.0212 (4)
C2A0.9359 (2)0.51052 (18)0.21625 (12)0.0244 (4)
C3A0.9278 (2)0.35998 (18)0.23691 (13)0.0241 (5)
C4A0.7995 (2)0.23068 (17)0.17042 (12)0.0206 (4)
C5A0.6827 (2)0.24656 (19)0.08278 (14)0.0299 (5)
C6A0.6921 (2)0.39667 (19)0.06356 (14)0.0304 (5)
C11A0.8410 (2)0.72115 (19)0.00469 (14)0.0302 (5)
C21A0.8142 (2)0.69635 (18)0.11528 (13)0.0247 (4)
S50.31926 (5)0.00829 (4)0.26512 (3)0.0203 (1)
O20.83804 (16)0.60833 (15)0.51275 (10)0.0334 (4)
O110.43638 (16)0.62380 (14)0.25827 (10)0.0310 (4)
O120.67893 (15)0.76007 (13)0.38590 (10)0.0323 (4)
O510.17800 (14)0.04515 (12)0.19312 (9)0.0253 (3)
O520.25277 (15)−0.07135 (13)0.34506 (9)0.0289 (4)
O530.43041 (14)−0.08330 (13)0.20599 (9)0.0292 (3)
C10.5791 (2)0.47935 (17)0.36674 (12)0.0205 (4)
C20.7134 (2)0.47689 (18)0.45347 (12)0.0226 (4)
C30.7206 (2)0.33328 (19)0.48234 (13)0.0257 (5)
C40.5988 (2)0.19310 (18)0.42610 (12)0.0227 (5)
C50.46674 (19)0.19342 (17)0.33820 (12)0.0192 (4)
C60.45641 (19)0.33538 (17)0.30967 (12)0.0201 (4)
C110.5704 (2)0.63262 (18)0.33854 (13)0.0233 (5)
O1W0.9577 (2)0.04283 (16)0.39011 (11)0.0352 (4)
H2A1.022400.598400.260200.0290*
H3A1.007400.347100.294400.0290*
H5A0.599100.157700.037500.0360*
H6A0.614000.408100.004800.0370*
H11A0.824 (3)0.894 (3)−0.0554 (19)0.047 (6)*
H12A0.758700.63730−0.052900.0360*
H13A0.963100.71970−0.004000.0360*
H21A0.907800.773600.170600.0300*
H22A0.700000.719000.127200.0300*
H41A0.858 (3)0.075 (2)0.2578 (17)0.040 (5)*
H42A0.818 (3)0.009 (3)0.1367 (19)0.049 (6)*
H43A0.668 (3)0.026 (2)0.1963 (15)0.035 (5)*
H20.823 (3)0.685 (3)0.491 (2)0.062 (8)*
H30.808400.332500.540000.0310*
H40.603900.098300.446200.0270*
H60.367500.335200.252300.0240*
H110.434 (3)0.715 (3)0.2491 (17)0.047 (6)*
H11W0.883 (4)−0.035 (3)0.403 (2)0.069 (8)*
H12W1.047 (3)0.002 (3)0.3819 (17)0.046 (6)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O11A0.0568 (8)0.0265 (6)0.0266 (7)0.0153 (6)0.0133 (6)0.0147 (5)
N4A0.0250 (7)0.0188 (7)0.0293 (8)0.0067 (6)0.0076 (6)0.0093 (6)
C1A0.0239 (8)0.0180 (7)0.0226 (8)0.0051 (6)0.0050 (6)0.0066 (6)
C2A0.0268 (8)0.0188 (7)0.0228 (8)−0.0002 (6)0.0006 (6)0.0028 (6)
C3A0.0250 (8)0.0252 (8)0.0217 (8)0.0058 (6)0.0000 (6)0.0085 (6)
C4A0.0227 (8)0.0164 (7)0.0257 (8)0.0067 (6)0.0079 (6)0.0076 (6)
C5A0.0284 (9)0.0190 (8)0.0356 (9)0.0014 (7)−0.0066 (7)0.0054 (7)
C6A0.0290 (9)0.0230 (8)0.0341 (9)0.0041 (7)−0.0094 (7)0.0087 (7)
C11A0.0428 (10)0.0227 (8)0.0291 (9)0.0100 (7)0.0133 (8)0.0088 (7)
C21A0.0302 (8)0.0182 (7)0.0250 (8)0.0045 (6)0.0040 (7)0.0062 (6)
S50.0188 (2)0.0172 (2)0.0251 (2)0.0033 (1)0.0016 (2)0.0087 (2)
O20.0322 (7)0.0256 (6)0.0333 (7)−0.0010 (5)−0.0059 (5)0.0035 (5)
O110.0337 (7)0.0180 (6)0.0393 (7)0.0060 (5)−0.0028 (5)0.0102 (5)
O120.0320 (6)0.0204 (6)0.0399 (7)0.0000 (5)0.0026 (5)0.0062 (5)
O510.0224 (6)0.0253 (6)0.0276 (6)0.0033 (5)−0.0010 (5)0.0114 (5)
O520.0258 (6)0.0283 (6)0.0352 (7)0.0027 (5)0.0032 (5)0.0191 (5)
O530.0270 (6)0.0211 (5)0.0377 (7)0.0061 (5)0.0065 (5)0.0032 (5)
C10.0206 (7)0.0209 (7)0.0212 (7)0.0058 (6)0.0071 (6)0.0049 (6)
C20.0216 (7)0.0229 (8)0.0211 (8)0.0031 (6)0.0050 (6)0.0023 (6)
C30.0232 (8)0.0311 (8)0.0225 (8)0.0070 (7)0.0000 (6)0.0085 (7)
C40.0248 (8)0.0234 (8)0.0236 (8)0.0085 (6)0.0053 (6)0.0106 (6)
C50.0179 (7)0.0193 (7)0.0211 (7)0.0044 (6)0.0053 (6)0.0055 (6)
C60.0196 (7)0.0205 (7)0.0211 (7)0.0064 (6)0.0027 (6)0.0066 (6)
C110.0236 (8)0.0199 (8)0.0271 (8)0.0056 (6)0.0075 (7)0.0054 (6)
O1W0.0372 (8)0.0354 (7)0.0397 (7)0.0111 (6)0.0129 (6)0.0178 (6)

Geometric parameters (Å, °)

S5—O511.4563 (12)C4A—C5A1.384 (2)
S5—O521.4581 (12)C5A—C6A1.384 (2)
S5—O531.4747 (12)C11A—C21A1.518 (2)
S5—C51.7723 (16)C2A—H2A0.9300
O11A—C11A1.429 (2)C3A—H3A0.9300
O11A—H11A0.81 (2)C5A—H5A0.9300
O2—C21.348 (2)C6A—H6A0.9300
O11—C111.327 (2)C11A—H12A0.9700
O12—C111.234 (2)C11A—H13A0.9700
O2—H20.80 (3)C21A—H21A0.9700
O11—H110.84 (3)C21A—H22A0.9700
O1W—H11W0.87 (3)C1—C21.413 (2)
O1W—H12W0.85 (2)C1—C111.479 (2)
N4A—C4A1.468 (2)C1—C61.404 (2)
N4A—H41A0.94 (2)C2—C31.398 (2)
N4A—H42A0.89 (2)C3—C41.377 (2)
N4A—H43A0.94 (2)C4—C51.406 (2)
C1A—C6A1.393 (2)C5—C61.387 (2)
C1A—C2A1.394 (2)C3—H30.9300
C1A—C21A1.512 (2)C4—H40.9300
C2A—C3A1.396 (2)C6—H60.9300
C3A—C4A1.379 (2)
O51—S5—O53113.02 (7)C5A—C6A—H6A119.00
O51—S5—C5106.82 (7)C1A—C6A—H6A119.00
O52—S5—O53110.32 (7)C21A—C11A—H12A110.00
O52—S5—C5107.10 (7)C21A—C11A—H13A110.00
O53—S5—C5105.72 (7)H12A—C11A—H13A109.00
O51—S5—O52113.33 (7)O11A—C11A—H12A110.00
C11A—O11A—H11A109.8 (18)O11A—C11A—H13A110.00
C2—O2—H2109.8 (18)C1A—C21A—H22A108.00
C11—O11—H11110.7 (16)C1A—C21A—H21A108.00
H11W—O1W—H12W102 (3)H21A—C21A—H22A107.00
H41A—N4A—H43A105.5 (18)C11A—C21A—H21A108.00
H41A—N4A—H42A110 (2)C11A—C21A—H22A108.00
C4A—N4A—H41A112.1 (11)C2—C1—C11119.52 (14)
C4A—N4A—H43A111.1 (12)C6—C1—C11121.67 (14)
H42A—N4A—H43A110 (2)C2—C1—C6118.82 (14)
C4A—N4A—H42A108.5 (17)O2—C2—C3116.62 (14)
C2A—C1A—C6A118.47 (14)C1—C2—C3120.02 (14)
C2A—C1A—C21A120.69 (14)O2—C2—C1123.35 (14)
C6A—C1A—C21A120.74 (14)C2—C3—C4120.56 (15)
C1A—C2A—C3A120.99 (14)C3—C4—C5119.94 (15)
C2A—C3A—C4A118.74 (14)C4—C5—C6120.10 (14)
N4A—C4A—C5A118.38 (14)S5—C5—C4118.07 (12)
C3A—C4A—C5A121.53 (15)S5—C5—C6121.82 (12)
N4A—C4A—C3A120.08 (14)C1—C6—C5120.53 (14)
C4A—C5A—C6A119.01 (15)O11—C11—O12121.98 (15)
C1A—C6A—C5A121.20 (15)O11—C11—C1115.13 (14)
O11A—C11A—C21A106.35 (13)O12—C11—C1122.89 (14)
C1A—C21A—C11A115.37 (13)C4—C3—H3120.00
C1A—C2A—H2A120.00C2—C3—H3120.00
C3A—C2A—H2A119.00C3—C4—H4120.00
C4A—C3A—H3A121.00C5—C4—H4120.00
C2A—C3A—H3A121.00C1—C6—H6120.00
C4A—C5A—H5A121.00C5—C6—H6120.00
C6A—C5A—H5A120.00
O52—S5—C5—C448.08 (14)O11A—C11A—C21A—C1A170.97 (13)
O52—S5—C5—C6−133.01 (13)C6—C1—C2—O2179.56 (14)
O53—S5—C5—C4−69.56 (13)C6—C1—C2—C3−1.1 (2)
O53—S5—C5—C6109.35 (13)C11—C1—C2—O2−0.7 (2)
O51—S5—C5—C6−11.28 (15)C11—C1—C2—C3178.66 (14)
O51—S5—C5—C4169.81 (12)C2—C1—C6—C50.2 (2)
C6A—C1A—C21A—C11A−59.7 (2)C11—C1—C6—C5−179.57 (14)
C2A—C1A—C21A—C11A123.94 (16)C2—C1—C11—O11−177.96 (14)
C6A—C1A—C2A—C3A−2.3 (2)C2—C1—C11—O121.9 (2)
C21A—C1A—C2A—C3A174.16 (15)C6—C1—C11—O111.8 (2)
C2A—C1A—C6A—C5A2.1 (2)C6—C1—C11—O12−178.40 (15)
C21A—C1A—C6A—C5A−174.34 (15)O2—C2—C3—C4−179.87 (14)
C1A—C2A—C3A—C4A0.5 (2)C1—C2—C3—C40.7 (2)
C2A—C3A—C4A—C5A1.6 (2)C2—C3—C4—C50.6 (2)
C2A—C3A—C4A—N4A−178.94 (14)C3—C4—C5—S5177.44 (12)
N4A—C4A—C5A—C6A178.74 (15)C3—C4—C5—C6−1.5 (2)
C3A—C4A—C5A—C6A−1.8 (2)S5—C5—C6—C1−177.77 (12)
C4A—C5A—C6A—C1A−0.1 (2)C4—C5—C6—C11.1 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2···O120.80 (3)1.93 (3)2.6302 (18)145 (2)
O11—H11···O53i0.84 (3)1.97 (3)2.8034 (17)172 (2)
O11A—H11A···O51ii0.81 (2)1.95 (2)2.7444 (17)169 (2)
N4A—H41A···O1W0.94 (2)1.86 (2)2.784 (2)166.5 (19)
N4A—H42A···O11Aiii0.89 (2)1.87 (2)2.7287 (19)161 (2)
N4A—H43A···O530.94 (2)1.94 (2)2.8689 (19)175.6 (18)
O1W—H11W···O12iii0.87 (3)2.10 (3)2.9396 (19)164 (2)
O1W—H12W···O52iv0.85 (2)1.92 (2)2.759 (2)171 (2)
C3A—H3A···O2v0.932.503.373 (2)157
C6—H6···O510.932.572.9437 (19)104

Symmetry codes: (i) x, y+1, z; (ii) −x+1, −y+1, −z; (iii) x, y−1, z; (iv) x+1, y, z; (v) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2580).

References

  • Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
  • Bakasova, Z. B., Abdybaliev, D. A., Sharipov, Kh. T., Akbaev, A. A., Ibragimov, R. T., Talipov, S. A. & Ismankulov, A. I. (1991). Uzbek. Khim. Zh. pp. 22–25.
  • Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [PubMed]
  • Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  • Oxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
  • Sheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Smith, G. (2005). Acta Cryst. E61, o3398–o3400.
  • Smith, G. & Wermuth, U. D. (2009). Acta Cryst. E65, o2109. [PMC free article] [PubMed]
  • Smith, G., Wermuth, U. D. & Healy, P. C. (2006). Acta Cryst. E62, o2313–o2315.
  • Smith, G., Wermuth, U. D. & White, J. M. (2005a). Acta Cryst. C61, o105–o109. [PubMed]
  • Smith, G., Wermuth, U. D. & White, J. M. (2005b). Acta Cryst. E61, o313–o316.
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography