PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): o3015.
Published online 2009 November 7. doi:  10.1107/S1600536809045851
PMCID: PMC2971948

3-Cyclo­hexyl-2-thioxo-1,3-thia­zolidin-4-one

Abstract

In the title compound, C9H13NOS2, the complete mol­ecule is generated by crystallographic mirror symmetry, with all the non-H atoms of the rhodanine (2-thioxo-1,3-thia­zolidin-4-one) system and two C atoms of the cyclo­hexyl ring lying on the reflecting plane. The conformation is stabilized by intra­molecular C—H(...)O and C—H(...)S inter­actions. In the crystal, weak π–π inter­actions at a distance of 3.8140 (5) Å between the centroids of the heterocyclic rings occur.

Related literature

For related structures, see: Shahwar et al. (2009a [triangle],b [triangle],c [triangle],d [triangle]). For graph-set notation, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o3015-scheme1.jpg

Experimental

Crystal data

  • C9H13NOS2
  • M r = 215.32
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o3015-efi1.jpg
  • a = 7.3897 (3) Å
  • b = 7.0999 (4) Å
  • c = 10.3399 (5) Å
  • β = 107.535 (2)°
  • V = 517.29 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.48 mm−1
  • T = 296 K
  • 0.36 × 0.25 × 0.23 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.849, T max = 0.897
  • 5969 measured reflections
  • 1390 independent reflections
  • 1194 reflections with I > 2σ(I)
  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.096
  • S = 1.07
  • 1390 reflections
  • 76 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.43 e Å−3
  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809045851/hb5207sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809045851/hb5207Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

DS is grateful to Government College University, Lahore, for providing funds under the GCU funded Research Projects Programme.

supplementary crystallographic information

Comment

Our group is involved in synthesizing various rhodanine derivatives for beta-lactamase and xanthine oxidase enzyme inhibition studies. In this context, we have already reported the preparation and crystal structures of (II) (5Z)-5-(2-Hydroxybenzylidene)-3-phenyl-2-thioxo-1,3- thiazolidin-4-one (Shahwar et al., 2009a), (III) (5E)-5-(4-Hydroxy-3-methoxybenzylidene)-2-thioxo-1, 3-thiazolidin-4-one methanol monosolvate (Shahwar et al., 2009b), (IV) (5Z)-5-(2-Hydroxybenzylidene)-2-thioxo-1,3-thiazolidin-4-one methanol hemisolvate (Shahwar et al., 2009c) and (V) 3-(2-Methylphenyl)-2-thioxo-1,3-thiazolidin-4-one (Shahwar et al., 2009d). The title compound (I, Fig. 1) is in continuation of synthesizing rhodanine derivatives for biological studies.

In (I), the rhodanine group A (N1/C1/S1/C1/C3/O1/S2) and the basal plane B (C5/C6/C5i/C6i; symmetry code: i = x, - y + 1/2, z) of cyclohexyl are planar and are perpendicularly oriented. The monomeric molecules are stabilized through intramolecular H-bondings (Table 1, Fig. 1) forming a S(5) and two S(6) ring motifs (Bernstein et al., 1995). The apical C-atoms C4 and C7 of cyclohexyl are at a distance of 0.6430 (28) and -0.6667 (36) Å respectively, from the basal plane. There exist π–π interactions at a distance of 3.8140 (5) Å between the centroids of the heterocyclic rings.

Experimental

The title compound was prepared by a three step reaction procedure. In the first step cyclohexylamine (9.9 g, 0.1 mol) and triethylamine (50.5 g, 0.5 mol) were stirred in ethanol (20 ml) followed by dropwise addition of CS2 (15.2 g, 0.2 mol) while keeping the flask in an ice bath. The precipitate obtained were filtered off and washed with diethyl ether.

In second step, a solution of sodium chloroacetate (11.6 g, 0.1 mol) and chloroacetic acid (18.9 g, 0.2 mol) was prepared in 50 ml distilled water. To this solution the precipitates obtained in first step were added gradually and stirred at 273 K. This mixture was stirred untill it turned clear yellow.

In third step the yellow mixture was mixed in 140 ml hot (363–368 K) hydrochloric acid (6 N) and stirred for five minutes to obtain colorless crystalline precipitates. These precipitates were recrystalized in chloroform to get colourless prisms of (I).

Refinement

The coordinates of H2 were refined. The other H-atoms were positioned geometrically (C–H = 0.97–0.98 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
View of (I) with displacement ellipsoids drawn at the 50% probability level. The dotted lines represen the intramolecular H-bonds.

Crystal data

C9H13NOS2F(000) = 228
Mr = 215.32Dx = 1.382 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybCell parameters from 1390 reflections
a = 7.3897 (3) Åθ = 2.9–28.4°
b = 7.0999 (4) ŵ = 0.48 mm1
c = 10.3399 (5) ÅT = 296 K
β = 107.535 (2)°Prism, colourless
V = 517.29 (4) Å30.36 × 0.25 × 0.23 mm
Z = 2

Data collection

Bruker Kappa APEXII CCD diffractometer1390 independent reflections
Radiation source: fine-focus sealed tube1194 reflections with I > 2σ(I)
graphiteRint = 0.028
Detector resolution: 7.40 pixels mm-1θmax = 28.4°, θmin = 2.9°
ω scansh = −9→9
Absorption correction: multi-scan (SADABS; Bruker, 2005)k = −9→9
Tmin = 0.849, Tmax = 0.897l = −13→12
5969 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.07w = 1/[σ2(Fo2) + (0.0474P)2 + 0.1418P] where P = (Fo2 + 2Fc2)/3
1390 reflections(Δ/σ)max < 0.001
76 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = −0.23 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.01379 (9)0.250000.58014 (6)0.0511 (2)
S20.41214 (8)0.250000.58341 (6)0.0543 (2)
O1−0.1794 (2)0.250000.19333 (18)0.0591 (6)
N10.1088 (2)0.250000.35969 (16)0.0351 (4)
C10.1866 (3)0.250000.4967 (2)0.0363 (5)
C2−0.1778 (3)0.250000.4253 (3)0.0477 (7)
C3−0.0908 (3)0.250000.3109 (2)0.0412 (6)
C40.2266 (2)0.250000.26546 (19)0.0356 (5)
C50.1971 (2)0.0715 (2)0.18098 (16)0.0450 (4)
C60.3246 (2)0.0739 (3)0.08896 (17)0.0527 (5)
C70.2925 (4)0.250000.0025 (3)0.0590 (8)
H2−0.255 (2)0.142 (3)0.4183 (17)0.0573*
H40.359450.250000.322010.0427*
H510.065290.062260.126270.0540*
H520.22695−0.037480.240220.0540*
H610.456380.068200.144080.0633*
H620.29826−0.036200.030700.0633*
H710.163660.25000−0.058350.0707*
H720.378430.25000−0.052300.0707*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0636 (4)0.0480 (3)0.0539 (3)0.00000.0361 (3)0.0000
S20.0461 (3)0.0671 (4)0.0438 (3)0.00000.0046 (2)0.0000
O10.0307 (7)0.0850 (13)0.0582 (10)0.00000.0084 (7)0.0000
N10.0300 (7)0.0394 (8)0.0382 (8)0.00000.0138 (6)0.0000
C10.0431 (9)0.0288 (8)0.0401 (10)0.00000.0173 (8)0.0000
C20.0417 (10)0.0390 (11)0.0722 (15)0.00000.0318 (10)0.0000
C30.0303 (8)0.0395 (10)0.0554 (12)0.00000.0153 (8)0.0000
C40.0273 (7)0.0445 (10)0.0365 (9)0.00000.0121 (7)0.0000
C50.0444 (7)0.0422 (8)0.0528 (8)0.0012 (6)0.0213 (6)−0.0023 (6)
C60.0485 (8)0.0602 (10)0.0554 (9)0.0028 (7)0.0246 (7)−0.0120 (8)
C70.0561 (13)0.0816 (18)0.0456 (12)0.00000.0250 (10)0.0000

Geometric parameters (Å, °)

S1—C11.743 (2)C6—C71.514 (3)
S1—C21.789 (3)C2—H20.95 (2)
S2—C11.637 (2)C2—H2i0.95 (2)
O1—C31.195 (3)C4—H40.9800
N1—C11.359 (3)C5—H510.9700
N1—C31.408 (3)C5—H520.9700
N1—C41.489 (2)C6—H610.9700
C2—C31.507 (3)C6—H620.9700
C4—C51.5172 (18)C7—H710.9700
C4—C5i1.5172 (18)C7—H720.9700
C5—C61.528 (2)
C1—S1—C293.28 (11)C3—C2—H2i109.3 (10)
C1—N1—C3116.24 (17)H2—C2—H2i108.4 (16)
C1—N1—C4122.34 (16)N1—C4—H4107.00
C3—N1—C4121.43 (15)C5—C4—H4107.00
S1—C1—S2120.37 (12)C5i—C4—H4107.00
S1—C1—N1111.90 (16)C4—C5—H51110.00
S2—C1—N1127.73 (17)C4—C5—H52110.00
S1—C2—C3107.02 (16)C6—C5—H51110.00
O1—C3—N1124.0 (2)C6—C5—H52110.00
O1—C3—C2124.5 (2)H51—C5—H52108.00
N1—C3—C2111.56 (18)C5—C6—H61109.00
N1—C4—C5111.45 (9)C5—C6—H62109.00
N1—C4—C5i111.45 (9)C7—C6—H61109.00
C5—C4—C5i113.30 (14)C7—C6—H62109.00
C4—C5—C6109.92 (13)H61—C6—H62108.00
C5—C6—C7111.15 (17)C6—C7—H71109.00
C6—C7—C6i111.4 (2)C6—C7—H72109.00
S1—C2—H2111.4 (11)H71—C7—H72108.00
S1—C2—H2i111.4 (11)C6i—C7—H71109.00
C3—C2—H2109.3 (10)C6i—C7—H72109.00
C2—S1—C1—S2180.00 (1)C4—N1—C3—C2180.00 (1)
C2—S1—C1—N10.00 (1)C1—N1—C4—C5116.17 (11)
C1—S1—C2—C30.00 (1)C3—N1—C4—C5−63.83 (11)
C3—N1—C1—S10.00 (1)S1—C2—C3—O1180.00 (1)
C3—N1—C1—S2180.00 (1)S1—C2—C3—N10.00 (1)
C4—N1—C1—S1180.00 (1)N1—C4—C5—C6−178.24 (13)
C4—N1—C1—S20.00 (1)C5i—C4—C5—C655.10 (17)
C1—N1—C3—O1180.00 (1)C4—C5—C6—C7−54.99 (19)
C1—N1—C3—C20.00 (1)C5—C6—C7—C6i56.9 (2)
C4—N1—C3—O10.00 (1)

Symmetry codes: (i) x, −y+1/2, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C4—H4···S20.982.613.158 (2)115
C5—H51···O10.972.513.095 (2)119

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5207).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  • Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  • Shahwar, D., Tahir, M. N., Raza, M. A. & Iqbal, B. (2009a). Acta Cryst. E65, o2903. [PMC free article] [PubMed]
  • Shahwar, D., Tahir, M. N., Raza, M. A., Iqbal, B. & Naz, S. (2009b). Acta Cryst. E65, o2637. [PMC free article] [PubMed]
  • Shahwar, D., Tahir, M. N., Raza, M. A., Saddaf, M. & Majeed, S. (2009c). Acta Cryst. E65, o2638. [PMC free article] [PubMed]
  • Shahwar, D., Tahir, M. N., Yasmeen, A., Ahmad, N. & Khan, M. A. (2009d). Acta Cryst. E65, o3014. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography