PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): o3242.
Published online 2009 November 28. doi:  10.1107/S160053680905048X
PMCID: PMC2971947

2,2,2-Tribromo-N-(3-methyl­phen­yl)acetamide

Abstract

The asymmetric unit of the title compound, C9H8Br3NO, contains two independent mol­ecules. The conformation of the N—H bond is anti to the 3-methyl substituent in the benzene ring in each mol­ecule. The structure shows both intra­molecular N—H(...)Br and inter­molecular N—H(...)O hydrogen bonding, the latter leading to the formation of helical supra­molecular chains along the b axis.

Related literature

For preparation of the compound, see: Gowda et al. (2003 [triangle]). For our study of the effect of ring and side-chain substituents on the solid-state structures of N-aromatic amides, see: Gowda et al. (2007a [triangle],b [triangle], 2009 [triangle]). For the structures of other amides, see: Brown (1966 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o3242-scheme1.jpg

Experimental

Crystal data

  • C9H8Br3NO
  • M r = 385.89
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o3242-efi1.jpg
  • a = 11.360 (1) Å
  • b = 10.280 (1) Å
  • c = 20.298 (3) Å
  • β = 100.23 (1)°
  • V = 2332.7 (5) Å3
  • Z = 8
  • Cu Kα radiation
  • μ = 12.58 mm−1
  • T = 299 K
  • 0.28 × 0.13 × 0.08 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.127, T max = 0.433
  • 4358 measured reflections
  • 4147 independent reflections
  • 2939 reflections with I > 2σ(I)
  • R int = 0.059

Refinement

  • R[F 2 > 2σ(F 2)] = 0.080
  • wR(F 2) = 0.249
  • S = 1.04
  • 4147 reflections
  • 255 parameters
  • H-atom parameters constrained
  • Δρmax = 1.60 e Å−3
  • Δρmin = −1.66 e Å−3

Data collection: CAD-4-PC (Enraf–Nonius, 1996 [triangle]); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680905048X/tk2583sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680905048X/tk2583Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

As part of a study of the effect of the ring and the side-chain substituents on the solid-state structures of N-aromatic amides (Gowda et al., 2007a, b, 2009), in the present work, the structure of N-(3-methylphenyl)2,2,2-tribromoacetamide (I) has been determined (Fig. 1). The asymmetric unit of the structure contains two independent molecules. The conformation of the N—H bond is anti to the 3-methyl substituent in the benzene ring in each molecule, similar to that observed in N-(3-methylphenyl)2,2,2-trichloroacetamide (Gowda et al., 2007a) and N-(3-methylphenyl)2,2,2-trimethylacetamide (Gowda et al., 2007b). Further, the conformation of the N—H bond in the structure is anti to the C═O bond in the side-chain, similar to that observed in N-(phenyl)2,2,2-tribromoacetamide (Gowda et al., 2009) and other amides (Brown, 1966; Gowda et al., 2007a,b). The structure of (I) shows both the intramolecular N—H···Br and intermolecular N—H···O hydrogen bonding, Table 1. The packing diagram showing the hydrogen bonds (Table 1) and the supramolecular chains parallel to the b axis is shown in Fig. 2.

Experimental

The title compound was prepared from m-toluidine, tribromoacetic acid and phosphorylchloride according to the literature method (Gowda et al., 2003). Single crystals of (I) were obtained by the slow evaporation of its petroleum ether solution at room temperature.

Refinement

The H atoms were positioned with idealized geometry using a riding model with N—H = 0.86 Å and C—H = 0.93–0.96 Å, and with Uiso = 1.2Ueq(carrier atom).

The residual electron-density features are located in the regions of Br2 and Br1. The highest peak was 0.84 Å from Br2 and the deepest hole was 0.99 Å from Br1.

Figures

Fig. 1.
Molecular structures of the two independent molecules of (I), showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented as small spheres of arbitrary radii.
Fig. 2.
Molecular packing in (I) with hydrogen bonds shown as dashed lines.

Crystal data

C9H8Br3NOF(000) = 1456
Mr = 385.89Dx = 2.198 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 11.360 (1) Åθ = 4.9–20.6°
b = 10.280 (1) ŵ = 12.58 mm1
c = 20.298 (3) ÅT = 299 K
β = 100.23 (1)°Rod, colourless
V = 2332.7 (5) Å30.28 × 0.13 × 0.08 mm
Z = 8

Data collection

Enraf–Nonius CAD-4 diffractometer2939 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.059
graphiteθmax = 67.0°, θmin = 4.2°
ω/2θ scansh = −13→1
Absorption correction: ψ scan (North et al., 1968)k = −12→0
Tmin = 0.127, Tmax = 0.433l = −23→24
4358 measured reflections3 standard reflections every 120 min
4147 independent reflections intensity decay: 1.0%

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.080Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.249H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.1741P)2 + 2.28P] where P = (Fo2 + 2Fc2)/3
4147 reflections(Δ/σ)max < 0.001
255 parametersΔρmax = 1.60 e Å3
0 restraintsΔρmin = −1.66 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.6706 (9)0.5084 (11)−0.0373 (5)0.042 (2)
C20.6595 (10)0.4132 (11)−0.0870 (5)0.049 (3)
H20.71560.3465−0.08320.059*
C30.5676 (11)0.4153 (13)−0.1414 (6)0.059 (3)
C40.4854 (11)0.5134 (15)−0.1451 (7)0.068 (3)
H40.42460.5196−0.18220.082*
C50.4922 (13)0.6036 (15)−0.0939 (8)0.078 (4)
H50.43240.6660−0.09590.094*
C60.5834 (11)0.6036 (12)−0.0409 (7)0.060 (3)
H60.58740.6663−0.00760.072*
C70.8238 (9)0.4032 (9)0.0454 (5)0.038 (2)
C80.9316 (9)0.4273 (9)0.1025 (5)0.041 (2)
C90.5614 (13)0.3160 (14)−0.1948 (6)0.068 (4)
H9A0.50430.2503−0.18860.082*
H9B0.63870.2768−0.19280.082*
H9C0.53730.3565−0.23770.082*
Br11.01398 (11)0.58885 (12)0.09396 (6)0.0534 (4)
Br20.86902 (12)0.42753 (12)0.18531 (5)0.0544 (4)
Br31.04582 (12)0.28886 (14)0.10312 (7)0.0645 (4)
N10.7674 (7)0.5085 (8)0.0170 (4)0.0396 (18)
H1N0.79230.58290.03320.047*
O10.7944 (8)0.2926 (7)0.0314 (4)0.055 (2)
C100.1952 (9)−0.0100 (10)0.0500 (5)0.041 (2)
C110.2737 (10)0.0681 (10)0.0959 (5)0.047 (2)
H110.32990.12090.08080.056*
C120.2665 (13)0.0654 (12)0.1619 (5)0.060 (3)
C130.1874 (14)−0.0199 (13)0.1849 (6)0.070 (4)
H130.1880−0.02890.23050.084*
C140.1082 (14)−0.0910 (12)0.1392 (7)0.068 (4)
H140.0501−0.14080.15430.082*
C150.1128 (12)−0.0905 (11)0.0720 (6)0.056 (3)
H150.0619−0.14280.04220.067*
C160.2210 (9)0.0901 (9)−0.0539 (5)0.041 (2)
C170.2661 (11)0.0687 (11)−0.1209 (6)0.051 (3)
C180.3472 (14)0.1501 (18)0.2107 (7)0.084 (5)
H18A0.30640.22950.21740.101*
H18B0.41840.16960.19330.101*
H18C0.36820.10520.25260.101*
Br40.22259 (14)0.21315 (14)−0.17949 (7)0.0697 (5)
Br50.44004 (14)0.05889 (19)−0.09624 (9)0.0877 (6)
Br60.21012 (18)−0.08796 (14)−0.16568 (7)0.0792 (5)
N20.2067 (9)−0.0130 (8)−0.0181 (4)0.047 (2)
H2N0.2041−0.0876−0.03750.056*
O20.2111 (8)0.2020 (7)−0.0359 (4)0.0539 (19)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.043 (5)0.053 (6)0.031 (5)0.005 (5)0.007 (4)0.005 (4)
C20.041 (5)0.068 (7)0.035 (5)0.000 (5)0.002 (4)0.003 (5)
C30.052 (6)0.083 (9)0.041 (6)−0.015 (6)0.009 (5)0.008 (6)
C40.051 (7)0.089 (10)0.059 (8)−0.008 (7)−0.006 (6)0.007 (7)
C50.064 (8)0.084 (10)0.083 (11)0.020 (8)0.000 (7)0.020 (8)
C60.056 (7)0.052 (7)0.070 (8)−0.010 (5)0.007 (6)0.005 (6)
C70.046 (5)0.037 (5)0.031 (5)0.005 (4)0.007 (4)0.004 (4)
C80.048 (6)0.043 (5)0.030 (5)0.001 (4)0.003 (4)0.002 (4)
C90.083 (9)0.087 (9)0.033 (6)−0.020 (7)0.007 (6)−0.004 (6)
Br10.0538 (7)0.0568 (7)0.0478 (7)−0.0096 (5)0.0043 (5)−0.0019 (5)
Br20.0668 (8)0.0680 (8)0.0295 (6)0.0008 (6)0.0110 (5)0.0026 (5)
Br30.0608 (8)0.0645 (8)0.0660 (8)0.0231 (6)0.0057 (6)0.0021 (6)
N10.036 (4)0.035 (4)0.045 (5)−0.001 (3)0.000 (3)0.002 (3)
O10.078 (5)0.037 (4)0.043 (4)−0.003 (4)−0.009 (4)−0.003 (3)
C100.057 (6)0.036 (5)0.031 (5)0.013 (4)0.010 (4)0.003 (4)
C110.055 (6)0.052 (6)0.033 (5)0.014 (5)0.005 (4)0.002 (4)
C120.080 (8)0.070 (8)0.026 (5)0.020 (6)−0.004 (5)−0.004 (5)
C130.110 (11)0.067 (8)0.037 (6)0.019 (8)0.029 (7)−0.001 (6)
C140.108 (11)0.050 (7)0.059 (8)−0.007 (7)0.051 (8)0.004 (5)
C150.077 (8)0.048 (6)0.046 (6)−0.003 (6)0.024 (6)−0.010 (5)
C160.052 (6)0.042 (5)0.028 (5)0.000 (4)0.006 (4)−0.007 (4)
C170.058 (7)0.055 (6)0.043 (6)0.001 (5)0.016 (5)0.005 (5)
C180.086 (10)0.118 (13)0.042 (7)0.010 (9)−0.007 (7)−0.016 (8)
Br40.0915 (10)0.0705 (9)0.0531 (8)0.0183 (7)0.0289 (7)0.0263 (6)
Br50.0563 (8)0.1225 (15)0.0868 (12)0.0133 (8)0.0192 (8)0.0250 (10)
Br60.1327 (15)0.0674 (9)0.0405 (7)−0.0189 (8)0.0231 (8)−0.0114 (6)
N20.072 (6)0.035 (4)0.035 (4)−0.001 (4)0.015 (4)−0.003 (3)
O20.079 (5)0.033 (4)0.050 (4)0.003 (4)0.013 (4)0.002 (3)

Geometric parameters (Å, °)

C1—C61.385 (16)C10—C151.382 (16)
C1—C21.394 (15)C10—N21.411 (12)
C1—N11.412 (12)C10—C111.419 (15)
C2—C31.379 (16)C11—C121.357 (15)
C2—H20.9300C11—H110.9300
C3—C41.367 (19)C12—C131.39 (2)
C3—C91.482 (17)C12—C181.503 (18)
C4—C51.38 (2)C13—C141.38 (2)
C4—H40.9300C13—H130.9300
C5—C61.354 (18)C14—C151.373 (16)
C5—H50.9300C14—H140.9300
C6—H60.9300C15—H150.9300
C7—O11.205 (12)C16—O21.218 (12)
C7—N11.336 (12)C16—N21.311 (13)
C7—C81.548 (14)C16—C171.553 (14)
C8—Br31.925 (10)C17—Br61.902 (12)
C8—Br11.929 (10)C17—Br41.912 (11)
C8—Br21.938 (10)C17—Br51.953 (12)
C9—H9A0.9600C18—H18A0.9600
C9—H9B0.9600C18—H18B0.9600
C9—H9C0.9600C18—H18C0.9600
N1—H1N0.8600N2—H2N0.8600
C6—C1—C2119.0 (10)C15—C10—N2119.4 (9)
C6—C1—N1119.4 (10)C15—C10—C11120.6 (10)
C2—C1—N1121.5 (9)N2—C10—C11119.9 (10)
C3—C2—C1121.8 (11)C12—C11—C10119.7 (12)
C3—C2—H2119.1C12—C11—H11120.1
C1—C2—H2119.1C10—C11—H11120.1
C4—C3—C2117.9 (12)C11—C12—C13119.9 (12)
C4—C3—C9121.7 (12)C11—C12—C18120.2 (14)
C2—C3—C9120.4 (12)C13—C12—C18119.8 (12)
C3—C4—C5120.5 (12)C14—C13—C12119.3 (11)
C3—C4—H4119.8C14—C13—H13120.3
C5—C4—H4119.8C12—C13—H13120.3
C6—C5—C4121.9 (13)C15—C14—C13122.0 (12)
C6—C5—H5119.1C15—C14—H14119.0
C4—C5—H5119.1C13—C14—H14119.0
C5—C6—C1118.8 (13)C14—C15—C10118.1 (11)
C5—C6—H6120.6C14—C15—H15120.9
C1—C6—H6120.6C10—C15—H15120.9
O1—C7—N1124.8 (9)O2—C16—N2124.8 (9)
O1—C7—C8118.5 (8)O2—C16—C17117.3 (9)
N1—C7—C8116.6 (8)N2—C16—C17117.6 (9)
C7—C8—Br3109.2 (6)C16—C17—Br6113.8 (7)
C7—C8—Br1113.8 (6)C16—C17—Br4110.2 (7)
Br3—C8—Br1107.4 (5)Br6—C17—Br4109.5 (6)
C7—C8—Br2106.6 (7)C16—C17—Br5105.0 (7)
Br3—C8—Br2110.2 (5)Br6—C17—Br5108.4 (6)
Br1—C8—Br2109.6 (5)Br4—C17—Br5109.7 (6)
C3—C9—H9A109.5C12—C18—H18A109.5
C3—C9—H9B109.5C12—C18—H18B109.5
H9A—C9—H9B109.5H18A—C18—H18B109.5
C3—C9—H9C109.5C12—C18—H18C109.5
H9A—C9—H9C109.5H18A—C18—H18C109.5
H9B—C9—H9C109.5H18B—C18—H18C109.5
C7—N1—C1125.7 (9)C16—N2—C10124.5 (8)
C7—N1—H1N117.1C16—N2—H2N117.7
C1—N1—H1N117.1C10—N2—H2N117.7
C6—C1—C2—C33.6 (17)C15—C10—C11—C12−1.1 (16)
N1—C1—C2—C3−177.6 (10)N2—C10—C11—C12−176.5 (10)
C1—C2—C3—C4−1.0 (17)C10—C11—C12—C134.1 (17)
C1—C2—C3—C9177.3 (10)C10—C11—C12—C18−178.5 (11)
C2—C3—C4—C5−3(2)C11—C12—C13—C14−7(2)
C9—C3—C4—C5178.9 (12)C18—C12—C13—C14175.8 (13)
C3—C4—C5—C64(2)C12—C13—C14—C157(2)
C4—C5—C6—C1−2(2)C13—C14—C15—C10−4(2)
C2—C1—C6—C5−2.3 (18)N2—C10—C15—C14176.3 (11)
N1—C1—C6—C5178.9 (11)C11—C10—C15—C140.9 (17)
O1—C7—C8—Br333.1 (12)O2—C16—C17—Br6−151.8 (9)
N1—C7—C8—Br3−149.3 (7)N2—C16—C17—Br634.1 (13)
O1—C7—C8—Br1153.1 (8)O2—C16—C17—Br4−28.4 (13)
N1—C7—C8—Br1−29.2 (11)N2—C16—C17—Br4157.5 (8)
O1—C7—C8—Br2−86.0 (10)O2—C16—C17—Br589.7 (10)
N1—C7—C8—Br291.6 (9)N2—C16—C17—Br5−84.4 (10)
O1—C7—N1—C1−5.2 (17)O2—C16—N2—C10−9.8 (18)
C8—C7—N1—C1177.3 (9)C17—C16—N2—C10163.8 (10)
C6—C1—N1—C7146.8 (11)C15—C10—N2—C16139.2 (11)
C2—C1—N1—C7−32.0 (15)C11—C10—N2—C16−45.4 (15)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.862.213.005 (11)153
N1—H1N···Br10.862.603.068 (8)115
N2—H2N···O1ii0.862.112.886 (11)150
N2—H2N···Br60.862.613.100 (8)117

Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2583).

References

  • Brown, C. J. (1966). Acta Cryst. 21, 442–445.
  • Enraf–Nonius (1996). CAD-4-PC. Enraf–Nonius, Delft, The Netherlands.
  • Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009). Acta Cryst. E65, o2226. [PMC free article] [PubMed]
  • Gowda, B. T., Kozisek, J., Svoboda, I. & Fuess, H. (2007a). Z. Naturforsch. Teil A, 62, 91–100.
  • Gowda, B. T., Kozisek, J., Tokarčík, M. & Fuess, H. (2007b). Acta Cryst. E63, o2073–o2074.
  • Gowda, B. T., Usha, K. M. & Jayalakshmi, K. L. (2003). Z. Naturforsch. Teil A, 58, 801–806.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Stoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography