PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): o3255–o3256.
Published online 2009 November 28. doi:  10.1107/S1600536809050508
PMCID: PMC2971946

(E)-3-(4-Chloro­phen­yl)-1-(1-naphth­yl)prop-2-en-1-one

Abstract

In the title compound, C19H13ClO, the benzene ring and the naphthalene system, are twisted by 12.3 (3) and 36.1 (2)°, respectively, and in opposite directions with respect to the central propenone bridge. The bond-angle pattern within the benzene ring is influence by both substituents; these influences are almost additive. In the crystal, the molecules are linked by C—H(...)O and C—H(...)Cl inter­actions.

Related literature

For chalcones, see: Dhar (1981 [triangle]); Di Carlo et al. (1999 [triangle]); Dimmock et al. (1999 [triangle]); Goto et al. (1991 [triangle]); Indira et al. (2002 [triangle]); Sarojini et al. (2006 [triangle]); Satyanarayana et al. (2004 [triangle]); Uchida et al. (1998 [triangle]); Yarishkin (2008 [triangle]). For the 1-naphtyl analogue, see: Eswaramoorthy et al. (1994 [triangle]). For the influence of substituents on the geometry of the phenyl ring, see: Domenicano (1988 [triangle]). For a description of the Cambridge Crystallographic Database, see: Allen (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o3255-scheme1.jpg

Experimental

Crystal data

  • C19H13ClO
  • M r = 292.74
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o3255-efi1.jpg
  • a = 12.0392 (14) Å
  • b = 8.0544 (5) Å
  • c = 7.8472 (6) Å
  • β = 98.091 (10)°
  • V = 753.36 (11) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.25 mm−1
  • T = 295 K
  • 0.30 × 0.20 × 0.15 mm

Data collection

  • Oxford Diffraction Xcalibur (Sapphire2, large Be window) diffractometer
  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009 [triangle]) T min = 0.666, T max = 1.000
  • 2481 measured reflections
  • 1866 independent reflections
  • 1440 reflections with I > 2σ(I)
  • R int = 0.014

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.083
  • S = 0.96
  • 1866 reflections
  • 190 parameters
  • 2 restraints
  • H-atom parameters constrained
  • Δρmax = 0.12 e Å−3
  • Δρmin = −0.13 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 423 Friedel pairs
  • Flack parameter: 0.08 (7)

Data collection: CrysAlis PRO (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1993 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: Stereochemical Workstation Operation Manual (Siemens, 1989 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809050508/fk2008sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809050508/fk2008Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

SS thanks Mangalore University for the research facilitie.

supplementary crystallographic information

Comment

Chalcones constitute an important family of flavonoids. They have been reported to possess many interesting pharmacological activities (Dhar, 1981) including anti-inflammatory, antimicrobial, antifungal, antioxidant, cytotoxic, antitumor and anticancer activities (Dimmock et al., 1999; Satyanarayana et al., 2004). Some chalcones demonstrated the ability to block voltage-dependent potassium channels (Yarishkin et al., 2008). Chalcones are also finding application as organic nonlinear optical materials (NLO) for their SHG conversion efficiency (Sarojini et al., 2006). Chalcone derivatives are recognized material in the NLO applications because of their excellent blue light transmittance and good crystallization ability (Goto et al.,1991; Uchida et al.,1998; Indira et al., 2002). Chemically chalcones consists of open-chain flavonoids in which the two aromatic rings are joined by α,\&s-unsaturated carbonyl system. The radical quenching properties of the phenolic groups present in many chalcones have raised interest in using these compounds or chalcone rich plant extracts as drugs or food preservatives (Di Carlo et al., 1999). As a part of our efforts on the synthesis of naphthyl chalcones, this paper describes the crystal structure of a new naphthyl chalcone, (2E)-3-(4-Chlorophenyl)-1-(naphthalen-1-yl)prop-2-en-1-one (I, Scheme 1). There are 298 structures in the Cambridge Crystallographic Database (Allen, 2002: Ver. 5.30, Nov. 2008, last update Sep. 2009) that posses two aromatic moieties connected via CH=CH—CO– fragment, but only 10 of them are naphthyl chalcones, and the single one example with 1-naphthalene substituent (1-(1-Naphthalenyl)-3-(4-nitrophenyl)-2-propenone, Eswaramoorthy et al., 1994). It might be noted, that this structure apparently has errors: one of the torsion angles in the aromatic ring is as large as 5°.

The molecule of I is built of three approximately planar fragments (Fig. 1): the phenyl ring (A, maximum deviation form the least-squares plane is 0.006 (3) Å), propenone fragment C=C—C=O (B, 0.014 (2) Å), and the naphtalene ring system (C). This last fragment however is significantly folded, even though both individual rings are almost planar, the dihedral angle between these planes is as high as 5.05 (13)°. The overall conformation of I can be described in terms of dihedral angles between these fragments: A/B 36.1 (2)°, B/C 12.3 (3)°, and A/C 25.51 (9)°. These values show that the terminal planes are twisted in opposite sense with respect to the central bridging fragment. This situation is relatively rare, the majority of chalcones found in the CDB shows the same sense of rotation with respect to the central bridge.

The bond lengths within the conjugated linear fragment suggest the large degree of localization: C—C bond length of 1.480 (4) Å, C=C of 1.329 (4)Å and C=O 1.232 (3) Å. The bond angles within the phenyl ring are influenced by both Cl and C=C– substituents, and these influences are almost additive, as suggested e.g., by Domenicano (1988). The distribution is almost symmetrical with respect to the C15···C18 line, and the values are close to those calculated by summing the effects of both substituents.

In the crystal structure there is one relatively short C—H···O potential hydrogen bond, C17—H17···O12(x,1 + y,z), that link molecules into infinite chains along y direction, and few weak C—H···O and C—H···π contacts, which can stabilize the packing otherwise determined by the van der Waals interactions and close packing requirements (Fig. 2).

Experimental

To a mixture of 1-acetonaphthone (1.7 g, 0.01 mol) and p-chlorobenzaldehyde (1.4 g, 0.01 mol) in 30 ml e thanol, 10 ml of 10% sodium hydroxide solution was added and stirred at 5–10 oC for 3 h. The precipitate formed was collected by filtration and purified by recrystallization from ethanol. The single-crystal was grown from DMF by slow evaporation method and yield of the compound was 82%. (m.p. 360–362 K). Analytical data: Found (Calculated): C %: 76.89 (77.95); H %: 4.23 (4.48).

Refinement

Hydrogen atoms were located geometrically and refined as a riding model; their Uiso values were set at 1.2 times Ueq of their carrier carbon atom.

Figures

Fig. 1.
Anisotropic ellipsoid representation of the compound I together with atom labelling scheme. The ellipsoids are drawn at 50% probability level, hydrogen atoms are depicted as spheres with arbitrary radii.
Fig. 2.
The crystal packing of I as seen along z direction; weak C—H···O bonds are shown as dashed lines.
Fig. 3.
The formation of the title compound.

Crystal data

C19H13ClOF(000) = 304
Mr = 292.74Dx = 1.291 Mg m3
Monoclinic, PcMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2ycCell parameters from 1288 reflections
a = 12.0392 (14) Åθ = 2.5–26.6°
b = 8.0544 (5) ŵ = 0.25 mm1
c = 7.8472 (6) ÅT = 295 K
β = 98.091 (10)°Block, colourless
V = 753.36 (11) Å30.30 × 0.20 × 0.15 mm
Z = 2

Data collection

Oxford Diffraction Xcalibur (Sapphire2, large Be window) diffractometer1866 independent reflections
Radiation source: Enhance (Mo) X-ray Source1440 reflections with I > 2σ(I)
graphiteRint = 0.014
Detector resolution: 8.1929 pixels mm-1θmax = 26.6°, θmin = 2.5°
ω scanh = −14→11
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009)k = −9→4
Tmin = 0.667, Tmax = 1.000l = −9→6
2481 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.083w = 1/[σ2(Fo2) + (0.050P)2] where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max = 0.001
1866 reflectionsΔρmax = 0.12 e Å3
190 parametersΔρmin = −0.13 e Å3
2 restraintsAbsolute structure: Flack (1983), 423 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.08 (7)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.0117 (2)0.4299 (3)0.5052 (3)0.0451 (6)
C2−0.0556 (2)0.5690 (3)0.4967 (3)0.0543 (7)
H2−0.02560.66810.54350.065*
C3−0.1681 (2)0.5651 (4)0.4195 (4)0.0618 (7)
H3−0.21190.66050.41540.074*
C4−0.2124 (2)0.4207 (4)0.3508 (4)0.0617 (7)
H4−0.28790.41750.30480.074*
C5−0.1473 (2)0.2754 (3)0.3471 (3)0.0521 (6)
C6−0.1908 (2)0.1292 (4)0.2642 (4)0.0657 (7)
H6−0.26610.12560.21730.079*
C7−0.1260 (3)−0.0057 (4)0.2513 (4)0.0753 (9)
H7−0.1567−0.10100.19670.090*
C8−0.0125 (3)−0.0015 (4)0.3204 (4)0.0697 (8)
H80.0325−0.09340.30840.084*
C90.0335 (2)0.1362 (3)0.4058 (4)0.0563 (7)
H90.10880.13550.45280.068*
C10−0.0321 (2)0.2793 (3)0.4233 (3)0.0469 (6)
C110.1246 (2)0.4368 (3)0.6114 (3)0.0526 (6)
O120.16532 (16)0.3125 (2)0.6876 (3)0.0740 (6)
C130.1853 (2)0.5973 (3)0.6331 (3)0.0562 (7)
H130.15630.68900.56980.067*
C140.2804 (2)0.6132 (3)0.7411 (4)0.0581 (7)
H140.30760.51750.79890.070*
C150.3469 (2)0.7639 (4)0.7790 (4)0.0543 (7)
C160.3072 (2)0.9202 (3)0.7270 (4)0.0637 (8)
H160.23570.92970.66510.076*
C170.3705 (2)1.0620 (4)0.7642 (4)0.0682 (9)
H170.34211.16560.72820.082*
C180.4770 (2)1.0472 (4)0.8560 (4)0.0674 (9)
C190.5195 (2)0.8945 (4)0.9109 (4)0.0711 (8)
H190.59120.88560.97230.085*
C200.4540 (2)0.7544 (4)0.8731 (4)0.0674 (8)
H200.48210.65140.91150.081*
Cl210.55687 (8)1.22525 (11)0.90310 (13)0.1042 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0455 (14)0.0522 (15)0.0381 (14)0.0023 (11)0.0074 (11)0.0011 (12)
C20.0602 (17)0.0538 (15)0.0500 (16)0.0043 (12)0.0113 (13)−0.0061 (13)
C30.0541 (17)0.0693 (18)0.0619 (18)0.0165 (13)0.0081 (14)−0.0018 (16)
C40.0477 (15)0.085 (2)0.0521 (16)0.0047 (14)0.0058 (12)0.0001 (16)
C50.0527 (15)0.0656 (17)0.0384 (15)−0.0037 (13)0.0074 (12)0.0013 (14)
C60.0662 (18)0.077 (2)0.0528 (17)−0.0111 (17)0.0052 (14)−0.0025 (17)
C70.102 (3)0.066 (2)0.057 (2)−0.0178 (18)0.0114 (18)−0.0110 (16)
C80.104 (3)0.0555 (17)0.0522 (17)0.0068 (16)0.0217 (17)−0.0032 (15)
C90.0653 (18)0.0581 (15)0.0469 (16)0.0059 (13)0.0126 (13)0.0024 (14)
C100.0550 (16)0.0516 (14)0.0364 (14)0.0008 (12)0.0144 (12)0.0049 (12)
C110.0533 (16)0.0559 (16)0.0491 (16)0.0055 (12)0.0090 (12)0.0026 (13)
O120.0674 (13)0.0677 (12)0.0812 (15)0.0034 (10)−0.0100 (11)0.0117 (12)
C130.0557 (17)0.0613 (16)0.0510 (16)0.0029 (12)0.0059 (14)0.0043 (13)
C140.0491 (15)0.0708 (17)0.0544 (17)0.0051 (13)0.0071 (13)0.0069 (15)
C150.0413 (15)0.073 (2)0.0478 (16)−0.0009 (13)0.0049 (12)0.0011 (13)
C160.0448 (16)0.079 (2)0.065 (2)−0.0034 (14)−0.0015 (13)0.0077 (16)
C170.0483 (17)0.077 (2)0.078 (2)−0.0085 (13)0.0042 (15)0.0113 (16)
C180.0488 (18)0.089 (2)0.065 (2)−0.0120 (15)0.0101 (15)−0.0020 (17)
C190.0420 (16)0.096 (2)0.073 (2)0.0000 (15)−0.0023 (14)−0.0061 (19)
C200.0532 (17)0.080 (2)0.066 (2)0.0088 (14)−0.0019 (14)0.0034 (16)
Cl210.0772 (5)0.1122 (7)0.1174 (8)−0.0353 (5)−0.0068 (5)−0.0004 (6)

Geometric parameters (Å, °)

C1—C21.379 (3)C9—H90.9300
C1—C101.438 (3)C11—O121.232 (3)
C1—C111.491 (3)C11—C131.483 (4)
C2—C31.404 (4)C13—C141.331 (3)
C2—H20.9300C13—H130.9300
C3—C41.359 (4)C14—C151.462 (4)
C3—H30.9300C14—H140.9300
C4—C51.410 (4)C15—C161.387 (4)
C4—H40.9300C15—C201.395 (4)
C5—C61.410 (4)C16—C171.382 (4)
C5—C101.431 (3)C16—H160.9300
C6—C71.350 (4)C17—C181.385 (4)
C6—H60.9300C17—H170.9300
C7—C81.398 (4)C18—C191.378 (4)
C7—H70.9300C18—Cl211.737 (3)
C8—C91.371 (4)C19—C201.385 (4)
C8—H80.9300C19—H190.9300
C9—C101.415 (3)C20—H200.9300
C2—C1—C10119.2 (2)C5—C10—C1118.6 (2)
C2—C1—C11118.7 (2)O12—C11—C13119.8 (3)
C10—C1—C11122.0 (2)O12—C11—C1120.6 (2)
C1—C2—C3121.9 (3)C13—C11—C1119.5 (2)
C1—C2—H2119.1C14—C13—C11121.5 (3)
C3—C2—H2119.1C14—C13—H13119.2
C4—C3—C2119.4 (3)C11—C13—H13119.2
C4—C3—H3120.3C13—C14—C15127.3 (3)
C2—C3—H3120.3C13—C14—H14116.3
C3—C4—C5122.0 (2)C15—C14—H14116.3
C3—C4—H4119.0C16—C15—C20117.4 (3)
C5—C4—H4119.0C16—C15—C14122.5 (2)
C4—C5—C6122.1 (2)C20—C15—C14120.1 (3)
C4—C5—C10118.8 (2)C17—C16—C15122.1 (3)
C6—C5—C10119.1 (2)C17—C16—H16119.0
C7—C6—C5121.7 (3)C15—C16—H16119.0
C7—C6—H6119.1C16—C17—C18118.8 (3)
C5—C6—H6119.1C16—C17—H17120.6
C6—C7—C8119.7 (3)C18—C17—H17120.6
C6—C7—H7120.1C19—C18—C17121.0 (3)
C8—C7—H7120.1C19—C18—Cl21120.0 (2)
C9—C8—C7121.0 (3)C17—C18—Cl21118.9 (3)
C9—C8—H8119.5C18—C19—C20119.0 (3)
C7—C8—H8119.5C18—C19—H19120.5
C8—C9—C10120.9 (3)C20—C19—H19120.5
C8—C9—H9119.5C19—C20—C15121.6 (3)
C10—C9—H9119.5C19—C20—H20119.2
C9—C10—C5117.6 (2)C15—C20—H20119.2
C9—C10—C1123.7 (2)
C10—C1—C2—C34.0 (4)C11—C1—C10—C5170.1 (2)
C11—C1—C2—C3−171.1 (2)C2—C1—C11—O12146.6 (3)
C1—C2—C3—C4−0.1 (4)C10—C1—C11—O12−28.3 (4)
C2—C3—C4—C5−3.1 (4)C2—C1—C11—C13−29.9 (3)
C3—C4—C5—C6−175.0 (3)C10—C1—C11—C13155.1 (2)
C3—C4—C5—C102.1 (4)O12—C11—C13—C14−3.9 (4)
C4—C5—C6—C7175.5 (3)C1—C11—C13—C14172.7 (2)
C10—C5—C6—C7−1.6 (4)C11—C13—C14—C15−178.0 (3)
C5—C6—C7—C8−0.4 (4)C13—C14—C15—C1611.7 (4)
C6—C7—C8—C91.9 (4)C13—C14—C15—C20−169.2 (3)
C7—C8—C9—C10−1.3 (4)C20—C15—C16—C170.6 (4)
C8—C9—C10—C5−0.7 (3)C14—C15—C16—C17179.7 (3)
C8—C9—C10—C1−177.5 (2)C15—C16—C17—C180.2 (4)
C4—C5—C10—C9−175.1 (2)C16—C17—C18—C19−0.4 (4)
C6—C5—C10—C92.1 (3)C16—C17—C18—Cl21−180.0 (2)
C4—C5—C10—C11.9 (3)C17—C18—C19—C20−0.1 (4)
C6—C5—C10—C1179.1 (2)Cl21—C18—C19—C20179.4 (2)
C2—C1—C10—C9171.9 (2)C18—C19—C20—C150.9 (4)
C11—C1—C10—C9−13.2 (4)C16—C15—C20—C19−1.2 (4)
C2—C1—C10—C5−4.8 (3)C14—C15—C20—C19179.7 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C17—H17···O12i0.932.423.180 (4)139
C3—H3···Cl21ii0.932.923.703 (3)143
C8—H8···O12iii0.932.643.546 (4)163

Symmetry codes: (i) x, y+1, z; (ii) x−1, −y+2, z−1/2; (iii) x, −y, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FK2008).

References

  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
  • Dhar, D. N. (1981). The Chemistry of Chalcones and Related Compounds. New York: John Wiley.
  • Di Carlo, G., Mascolo, N., Izzo, A. A. & Capasso, F. (1999). Life Sci. 65, 337–353. [PubMed]
  • Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125–1149. [PubMed]
  • Domenicano, A. (1988). In Stereochemical Applications of gas-phase electron diffraction, edited by I. Hargittai & M. Hargittai, pp. 281–324. New York: VCH.
  • Eswaramoorthy, S., Ponnuswamy, M. N., Raju, K. S., Nanjundan, S. & Krishnasamy, V. (1994). Z. Kristallogr 209, 669–672.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Goto, Y., Hayashi, A., Kimura, Y. & Nakayama, M. (1991). J. Cryst. Growth, 108, 688–698.
  • Indira, J., Karat, P. P. & Sarojini, B. K. (2002). J. Cryst. Growth, 242, 209–214.
  • Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
  • Sarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. G. (2006). J. Cryst. Growth, 295, 54–59.
  • Satyanarayana, M., Tiwari, P., Tripathi, B. K., Sriwastava, A. K. & Pratap, R. (2004). Bioorg. Med. Chem., 12, 883–889. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1989). Stereochemical Workstation Operation Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Uchida, T., Kozawa, K., Sakai, T., Aoki, M., Yoguchi, H., Abduryim, A. & Watanabe, Y. (1998). Mol. Cryst. Liq. Cryst. 315, 135–140.
  • Yarishkin, O. V. (2008). Bioorg. Med. Chem. Lett. 18, 137–140. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography