PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): m1582–m1583.
Published online 2009 November 14. doi:  10.1107/S1600536809047473
PMCID: PMC2971944

Tetra­kis[μ-4-(dimethyl­amino)benzoato-κ2 O:O′]bis­[(N,N-diethyl­nicotinamide-κN 1)zinc(II)]

Abstract

The title mol­ecule, [Zn2(C9H10NO2)4(C10H14N2O)2], is a centrosymmetric binuclear complex, with Zn atoms [Zn(...)Zn′ = 2.8927 (4) Å] bridged by four carboxyl­ate groups from the dimethyl­amino­benzoate (DMAB) ligands. The four carboxyl O atoms around the Zn atom form a distorted square-planar arrangement; the distorted square-pyramidal coordination geometry is completed by the pyridine N atom of the N,N-diethyl­nicotinamide (DENA) ligand. The Zn atom is displaced by 0.3326 (2) Å from the plane of the four O atoms, with an average Zn—O distance of 2.0416 (12) Å. The dihedral angles between the carboxyl­ate groups and the adjacent benzene rings are 5.31 (8) and 11.00 (9)°, while the pyridine ring is oriented at dihedral angles of 66.26 (6) and 37.88 (7)° with respect to the benzene rings. Weak intra­molecular C—H(...)O and inter­molecular C—H(...)π inter­actions are present.

Related literature

For general background to niacin and the nicotinic acid derivative N,N-diethyl­nicotinamide (DENA), see: Bigoli et al. (1972 [triangle]); Krishnamachari (1974 [triangle]). For related structures, see: Hökelek et al. (1995 [triangle], 2009a [triangle],b [triangle]); Speier & Fulop (1989 [triangle]); Usubaliev et al. (1980 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1582-scheme1.jpg

Experimental

Crystal data

  • [Zn2(C9H10NO2)4(C10H14N2O)2]
  • M r = 1143.96
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1582-efi1.jpg
  • a = 9.2731 (6) Å
  • b = 13.2340 (8) Å
  • c = 13.4756 (8) Å
  • α = 112.348 (3)°
  • β = 109.236 (2)°
  • γ = 95.728 (2)°
  • V = 1395.33 (16) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.92 mm−1
  • T = 294 K
  • 0.52 × 0.35 × 0.25 mm

Data collection

  • Bruker Kappa APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.681, T max = 0.791
  • 24970 measured reflections
  • 6877 independent reflections
  • 5749 reflections with I > 2σ(I)
  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033
  • wR(F 2) = 0.090
  • S = 1.06
  • 6877 reflections
  • 349 parameters
  • H-atom parameters constrained
  • Δρmax = 0.24 e Å−3
  • Δρmin = −0.43 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON (Spek, 2009 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809047473/xu2669sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809047473/xu2669Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of X-ray diffractometer. This work was supported financially by the Scientific and Technological Research Council of Turkey (grant No. 108 T657).

supplementary crystallographic information

Comment

As a part of our ongoing investigation on transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N,N-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli et al., 1972), the title compound was synthesized and its crystal structure is reported herein.

The title compound is a binuclear compound, consisting of two DENA and four dimethylaminobenzoate (DMAB) ligands. The crystal structures of similar complexes of Cu2+ and Zn2+ ions, [Cu(C6H5COO)2(C5H5N)]2 (Usubaliev et al., 1980); [Cu(C6H5CO2)2(py)]2 (Speier & Fulop, 1989), [Cu2(C6H5COO)4(C10H14N2O)2] (Hökelek et al., 1995), [Zn2(C11H14NO2)4(C10H14N2O)2] (Hökelek et al., 2009a) and [Zn2(C8H8NO2)4(C10H14N2O)2].2H2O (Hökelek et al., 2009b) have also been determined. In these structures, the benzoate ion acts as a bidentate ligand.

The title dimeric complex, [Zn2(DMAB)4(DENA)2], has a centre of symmetry and two ZnII atoms surrounded by four DMAB groups and two DENA ligands (Fig. 1). The DENA ligands are coordinated to Zn atoms through pyridine N atoms only. The DMAB groups act as bridging ligands. The Zn···Zn' distance is 2.8927 (4) Å. The average Zn—O distance is 2.0416 (12) Å (Table 1), and four O atoms of the bridging DMAB ligands around each Zn atom form a distorted square plane. The Zn atom lies 0.3326 (2) Å below the least-squares plane. The average O—Zn—O bond angle is 88.48 (6)°. A distorted square-pyramidal arrangement around each Zn atom is completed by the pyridine N atom of DENA ligand at 2.0446 (13) Å from the Zn atom. The N3—Zn1···Zn1' angle is 163.64 (6)° and the dihedral angle between plane through Zn1, O1, O4, C1, Zn1', O1', O4', C1' and the plane through Zn1, O2, O5, C10, Zn1', O2', O5', C10' is 89.47 (7)°. The dihedral angles between the planar carboxylate groups and the adjacent benzene rings A (C2—C7) and B (C11—C16) are 5.31 (8)° and 11.00 (9)°, respectively, while that between rings A and B is A/B = 83.70 (6)°. Ring C (N3/C19—C23) is oriented with respect to rings A and B at dihedral angles A/C = 66.26 (6) and B/C = 37.88 (7) °.

Weak intramolecular C—H···O and C—H···π interactions (Table 2) are present, in which they may be effective in the stabilization of the structure.

Experimental

The title compound was prepared by the reaction of ZnSO4.H2O (0.9 g, 5 mmol) in H2O (50 ml) and DENA (1.78 g, 10 mmol) in H2O (50 ml) with sodium p-dimethylaminobenzoate (1.88 g, 10 mmol) in H2O (100 ml). The mixture was filtered and set aside to crystallize at ambient temperature for one week, giving colorless single crystals.

Refinement

H atoms were positioned geometrically with C—H = 0.93, 0.97 and 0.96 Å, for aromatic, methylene and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figures

Fig. 1.
The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 15% probability level. Primed atoms are generated by the symmetry operator:(') 1-x, 1-y, 1-z.

Crystal data

[Zn2(C9H10NO2)4(C10H14N2O)2]Z = 1
Mr = 1143.96F(000) = 600
Triclinic, P1Dx = 1.361 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.2731 (6) ÅCell parameters from 9870 reflections
b = 13.2340 (8) Åθ = 2.4–28.3°
c = 13.4756 (8) ŵ = 0.92 mm1
α = 112.348 (3)°T = 294 K
β = 109.236 (2)°Block, colorless
γ = 95.728 (2)°0.52 × 0.35 × 0.25 mm
V = 1395.33 (16) Å3

Data collection

Bruker Kappa APEXII CCD area-detector diffractometer6877 independent reflections
Radiation source: fine-focus sealed tube5749 reflections with I > 2σ(I)
graphiteRint = 0.029
[var phi] and ω scansθmax = 28.3°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −12→12
Tmin = 0.681, Tmax = 0.791k = −16→17
24970 measured reflectionsl = −17→17

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.0476P)2 + 0.2013P] where P = (Fo2 + 2Fc2)/3
6877 reflections(Δ/σ)max = 0.001
349 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = −0.43 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Zn10.647429 (19)0.587023 (15)0.565621 (14)0.03318 (7)
N10.0447 (2)0.97057 (18)0.3697 (2)0.0740 (6)
N20.3784 (2)0.63356 (17)1.11287 (14)0.0626 (5)
N30.88138 (15)0.67128 (11)0.64273 (11)0.0336 (3)
N41.16916 (19)0.90139 (14)1.01779 (14)0.0529 (4)
O10.52598 (14)0.69380 (11)0.52284 (11)0.0495 (3)
O20.58984 (16)0.62604 (11)0.70601 (11)0.0514 (3)
O31.2203 (3)1.00113 (14)0.92564 (15)0.0984 (7)
O40.69851 (15)0.44310 (11)0.57910 (12)0.0515 (3)
O50.63255 (15)0.51278 (12)0.39761 (10)0.0542 (3)
C10.3792 (2)0.65704 (15)0.46130 (14)0.0387 (4)
C20.29154 (19)0.73827 (14)0.43619 (14)0.0375 (4)
C30.1306 (2)0.70435 (16)0.36591 (16)0.0466 (4)
H30.07690.62870.33330.056*
C40.0491 (2)0.77940 (18)0.34350 (18)0.0533 (5)
H4−0.05840.75360.29610.064*
C50.1243 (2)0.89438 (17)0.39039 (18)0.0499 (4)
C60.2864 (2)0.92796 (17)0.46138 (18)0.0512 (5)
H60.34091.00350.49470.061*
C70.3659 (2)0.85148 (16)0.48263 (16)0.0453 (4)
H70.47340.87670.52990.054*
C80.1256 (3)1.0887 (2)0.4196 (2)0.0767 (7)
H8A0.05081.13010.39920.115*
H8B0.20451.09610.38950.115*
H8C0.17521.11830.50320.115*
C9−0.1234 (3)0.9381 (2)0.3032 (2)0.0778 (7)
H9A−0.15861.00360.30190.117*
H9B−0.17590.90560.33880.117*
H9C−0.14780.88360.22470.117*
C100.4677 (2)0.56674 (16)0.69715 (14)0.0418 (4)
C110.43798 (19)0.58899 (15)0.80439 (14)0.0398 (4)
C120.3197 (2)0.51570 (17)0.80381 (15)0.0486 (4)
H120.25290.45480.73340.058*
C130.2979 (2)0.53000 (18)0.90376 (17)0.0531 (5)
H130.21690.47910.89970.064*
C140.3962 (2)0.62048 (17)1.01199 (15)0.0478 (4)
C150.5102 (2)0.69743 (18)1.01119 (15)0.0530 (5)
H150.57350.76081.08050.064*
C160.5308 (2)0.68143 (17)0.91032 (15)0.0474 (4)
H160.60870.73370.91310.057*
C170.4929 (3)0.7180 (2)1.22593 (18)0.0795 (7)
H17A0.47600.70421.28670.119*
H17B0.48080.79181.23500.119*
H17C0.59770.71401.23100.119*
C180.2607 (3)0.5536 (2)1.1128 (2)0.0754 (7)
H18A0.27010.57431.19160.113*
H18B0.27630.47931.08080.113*
H18C0.15720.55391.06610.113*
C190.94694 (19)0.75356 (14)0.75189 (14)0.0369 (4)
H190.88230.77500.79210.044*
C201.1054 (2)0.80823 (15)0.80792 (15)0.0427 (4)
C211.2004 (2)0.77375 (18)0.74711 (18)0.0539 (5)
H211.30800.80890.78160.065*
C221.1348 (2)0.68765 (18)0.63601 (18)0.0537 (5)
H221.19760.66210.59510.064*
C230.9753 (2)0.63968 (15)0.58606 (15)0.0416 (4)
H230.93050.58290.50970.050*
C241.1705 (2)0.91161 (17)0.92357 (17)0.0536 (5)
C251.2270 (3)1.0051 (2)1.1274 (2)0.0837 (8)
H25A1.17580.99541.17660.100*
H25B1.19731.06671.11010.100*
C261.4002 (4)1.0362 (3)1.1927 (3)0.1230 (13)
H26A1.43141.10601.26190.184*
H26B1.45181.04491.14420.184*
H26C1.42990.97771.21440.184*
C271.1366 (3)0.79420 (19)1.02381 (18)0.0609 (5)
H27A1.22120.79691.09120.073*
H27B1.13680.73410.95450.073*
C280.9820 (4)0.7661 (3)1.0327 (3)0.0990 (9)
H28A0.97750.70361.05220.149*
H28B0.89670.74630.95910.149*
H28C0.97290.83061.09260.149*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn10.02904 (10)0.03429 (12)0.03032 (10)0.00543 (7)0.01153 (7)0.00929 (8)
N10.0647 (12)0.0723 (13)0.1079 (16)0.0331 (10)0.0319 (11)0.0608 (12)
N20.0671 (11)0.0820 (13)0.0420 (9)0.0147 (10)0.0313 (8)0.0238 (9)
N30.0325 (6)0.0324 (7)0.0342 (7)0.0087 (5)0.0142 (5)0.0120 (6)
N40.0554 (10)0.0441 (9)0.0426 (8)0.0082 (7)0.0161 (7)0.0065 (7)
O10.0403 (7)0.0488 (8)0.0577 (8)0.0151 (6)0.0144 (6)0.0253 (6)
O20.0586 (8)0.0561 (8)0.0402 (7)0.0107 (6)0.0297 (6)0.0145 (6)
O30.1420 (17)0.0466 (10)0.0616 (10)−0.0197 (10)0.0089 (10)0.0166 (8)
O40.0514 (7)0.0395 (7)0.0664 (8)0.0141 (6)0.0237 (6)0.0253 (6)
O50.0479 (7)0.0726 (9)0.0298 (6)0.0141 (7)0.0151 (5)0.0108 (6)
C10.0444 (9)0.0414 (10)0.0387 (9)0.0150 (7)0.0233 (7)0.0191 (8)
C20.0395 (8)0.0417 (9)0.0381 (8)0.0118 (7)0.0197 (7)0.0202 (7)
C30.0426 (9)0.0424 (10)0.0513 (10)0.0073 (8)0.0159 (8)0.0204 (8)
C40.0403 (9)0.0593 (13)0.0585 (12)0.0129 (9)0.0130 (8)0.0296 (10)
C50.0522 (11)0.0547 (12)0.0596 (12)0.0221 (9)0.0271 (9)0.0358 (10)
C60.0538 (11)0.0411 (10)0.0640 (12)0.0108 (8)0.0240 (9)0.0284 (9)
C70.0398 (9)0.0465 (10)0.0510 (10)0.0085 (8)0.0173 (8)0.0241 (9)
C80.0995 (19)0.0644 (16)0.0989 (19)0.0435 (14)0.0491 (16)0.0549 (15)
C90.0682 (15)0.104 (2)0.0950 (19)0.0481 (15)0.0366 (14)0.0672 (17)
C100.0423 (9)0.0517 (11)0.0345 (8)0.0217 (8)0.0190 (7)0.0166 (8)
C110.0367 (8)0.0509 (10)0.0323 (8)0.0161 (7)0.0164 (7)0.0153 (7)
C120.0471 (10)0.0517 (11)0.0359 (9)0.0081 (8)0.0150 (8)0.0107 (8)
C130.0522 (11)0.0602 (12)0.0469 (10)0.0069 (9)0.0250 (9)0.0210 (9)
C140.0488 (10)0.0608 (12)0.0391 (9)0.0194 (9)0.0243 (8)0.0203 (9)
C150.0483 (10)0.0634 (13)0.0322 (9)0.0059 (9)0.0166 (8)0.0075 (9)
C160.0410 (9)0.0574 (12)0.0374 (9)0.0070 (8)0.0191 (7)0.0128 (8)
C170.0939 (18)0.100 (2)0.0390 (11)0.0174 (15)0.0317 (12)0.0223 (12)
C180.0869 (17)0.0942 (19)0.0689 (15)0.0242 (14)0.0474 (14)0.0456 (15)
C190.0358 (8)0.0342 (9)0.0345 (8)0.0068 (7)0.0140 (6)0.0097 (7)
C200.0384 (9)0.0404 (10)0.0390 (9)0.0039 (7)0.0071 (7)0.0160 (8)
C210.0300 (8)0.0586 (12)0.0637 (12)0.0058 (8)0.0136 (8)0.0234 (10)
C220.0401 (9)0.0651 (13)0.0621 (12)0.0180 (9)0.0298 (9)0.0249 (10)
C230.0402 (9)0.0431 (10)0.0391 (9)0.0123 (7)0.0197 (7)0.0122 (8)
C240.0504 (11)0.0419 (11)0.0454 (10)0.0019 (8)0.0044 (8)0.0113 (8)
C250.108 (2)0.0578 (15)0.0513 (13)0.0038 (14)0.0278 (13)−0.0016 (11)
C260.110 (3)0.107 (3)0.0625 (17)−0.029 (2)−0.0102 (16)0.0001 (16)
C270.0666 (13)0.0592 (13)0.0478 (11)0.0142 (10)0.0150 (10)0.0215 (10)
C280.100 (2)0.110 (2)0.110 (2)0.0161 (18)0.0574 (19)0.061 (2)

Geometric parameters (Å, °)

Zn1—Zn1i2.8927 (4)C11—C161.388 (2)
Zn1—O12.0265 (12)C12—C131.373 (3)
Zn1—O22.0269 (12)C12—H120.9300
Zn1—O42.0669 (12)C13—H130.9300
Zn1—O52.0459 (12)C14—N21.371 (2)
Zn1—N32.0446 (13)C14—C131.404 (3)
O1—C11.263 (2)C14—C151.399 (3)
O2—C101.255 (2)C15—C161.374 (2)
O4—C1i1.255 (2)C15—H150.9300
O5—C10i1.266 (2)C16—H160.9300
N1—C91.438 (3)C17—H17A0.9600
N1—C81.447 (3)C17—H17B0.9600
N2—C181.443 (3)C17—H17C0.9600
N2—C171.449 (3)C18—H18A0.9600
N3—C191.334 (2)C18—H18B0.9600
N3—C231.336 (2)C18—H18C0.9600
N4—C251.463 (3)C19—C201.377 (2)
N4—C271.459 (3)C19—H190.9300
C1—O4i1.255 (2)C20—C211.388 (3)
C2—C11.484 (2)C20—C241.503 (2)
C2—C31.392 (2)C21—H210.9300
C2—C71.381 (2)C22—C211.369 (3)
C3—C41.369 (3)C22—H220.9300
C3—H30.9300C23—C221.370 (2)
C4—C51.403 (3)C23—H230.9300
C4—H40.9300C24—O31.214 (3)
C5—N11.366 (2)C24—N41.331 (3)
C6—C51.402 (3)C25—C261.478 (4)
C6—H60.9300C25—H25A0.9700
C7—C61.371 (3)C25—H25B0.9700
C7—H70.9300C26—H26A0.9600
C8—H8A0.9600C26—H26B0.9600
C8—H8B0.9600C26—H26C0.9600
C8—H8C0.9600C27—C281.500 (3)
C9—H9A0.9600C27—H27A0.9700
C9—H9B0.9600C27—H27B0.9700
C9—H9C0.9600C28—H28A0.9600
C10—O5i1.266 (2)C28—H28B0.9600
C11—C101.485 (2)C28—H28C0.9600
C11—C121.386 (3)
O1—Zn1—O289.01 (6)C13—C12—H12118.9
O1—Zn1—O4161.34 (5)C12—C13—C14120.84 (18)
O1—Zn1—O588.39 (6)C12—C13—H13119.6
O1—Zn1—N3106.31 (5)C14—C13—H13119.6
O2—Zn1—O489.28 (6)N2—C14—C13121.29 (18)
O2—Zn1—O5161.09 (6)N2—C14—C15121.92 (18)
O2—Zn1—N3101.76 (5)C15—C14—C13116.77 (16)
O5—Zn1—O487.23 (6)C16—C15—C14121.46 (18)
N3—Zn1—O492.23 (5)C16—C15—H15119.3
N3—Zn1—O596.95 (5)C14—C15—H15119.3
C1—O1—Zn1118.82 (11)C11—C16—H16119.2
C10—O2—Zn1119.77 (11)C15—C16—C11121.52 (18)
C1i—O4—Zn1135.03 (12)C15—C16—H16119.2
C10i—O5—Zn1134.43 (12)N2—C17—H17A109.5
C5—N1—C8120.9 (2)N2—C17—H17B109.5
C5—N1—C9121.6 (2)N2—C17—H17C109.5
C9—N1—C8117.41 (19)H17A—C17—H17B109.5
C14—N2—C17120.85 (19)H17A—C17—H17C109.5
C14—N2—C18121.51 (19)H17B—C17—H17C109.5
C18—N2—C17116.96 (18)N2—C18—H18A109.5
C19—N3—Zn1121.99 (11)N2—C18—H18B109.5
C19—N3—C23118.04 (14)N2—C18—H18C109.5
C23—N3—Zn1119.85 (11)H18A—C18—H18B109.5
C24—N4—C25117.08 (19)H18A—C18—H18C109.5
C24—N4—C27124.81 (17)H18B—C18—H18C109.5
C27—N4—C25117.48 (18)N3—C19—C20123.28 (15)
O1—C1—C2117.78 (15)N3—C19—H19118.4
O4i—C1—O1124.74 (16)C20—C19—H19118.4
O4i—C1—C2117.47 (15)C19—C20—C21117.52 (16)
C3—C2—C1121.68 (16)C19—C20—C24121.55 (16)
C7—C2—C1121.40 (15)C21—C20—C24120.41 (16)
C7—C2—C3116.92 (16)C20—C21—H21120.2
C2—C3—H3119.1C22—C21—C20119.63 (16)
C4—C3—C2121.76 (17)C22—C21—H21120.2
C4—C3—H3119.1C21—C22—C23118.90 (17)
C3—C4—C5121.46 (18)C21—C22—H22120.6
C3—C4—H4119.3C23—C22—H22120.6
C5—C4—H4119.3N3—C23—C22122.60 (16)
N1—C5—C4122.23 (19)N3—C23—H23118.7
N1—C5—C6121.32 (19)C22—C23—H23118.7
C6—C5—C4116.45 (17)O3—C24—N4123.26 (19)
C5—C6—H6119.4O3—C24—C20117.73 (19)
C7—C6—C5121.22 (18)N4—C24—C20119.00 (18)
C7—C6—H6119.4N4—C25—C26113.3 (2)
C2—C7—H7118.9N4—C25—H25A108.9
C6—C7—C2122.19 (17)N4—C25—H25B108.9
C6—C7—H7118.9C26—C25—H25A108.9
N1—C8—H8A109.5C26—C25—H25B108.9
N1—C8—H8B109.5H25A—C25—H25B107.7
N1—C8—H8C109.5C25—C26—H26A109.5
H8A—C8—H8B109.5C25—C26—H26B109.5
H8A—C8—H8C109.5C25—C26—H26C109.5
H8B—C8—H8C109.5H26A—C26—H26B109.5
N1—C9—H9A109.5H26A—C26—H26C109.5
N1—C9—H9B109.5H26B—C26—H26C109.5
N1—C9—H9C109.5N4—C27—C28113.8 (2)
H9A—C9—H9B109.5N4—C27—H27A108.8
H9A—C9—H9C109.5N4—C27—H27B108.8
H9B—C9—H9C109.5C28—C27—H27A108.8
O2—C10—O5i124.39 (16)C28—C27—H27B108.8
O2—C10—C11118.63 (15)H27A—C27—H27B107.7
O5i—C10—C11116.98 (16)C27—C28—H28A109.5
C12—C11—C10121.20 (16)C27—C28—H28B109.5
C12—C11—C16117.10 (16)C27—C28—H28C109.5
C16—C11—C10121.66 (16)H28A—C28—H28B109.5
C11—C12—H12118.9H28A—C28—H28C109.5
C13—C12—C11122.17 (17)H28B—C28—H28C109.5
O2—Zn1—O1—C1−86.30 (13)C3—C2—C7—C60.1 (3)
O4—Zn1—O1—C1−1.5 (2)C2—C3—C4—C50.0 (3)
O5—Zn1—O1—C174.97 (13)C3—C4—C5—N1−179.4 (2)
N3—Zn1—O1—C1171.73 (12)C3—C4—C5—C6−0.2 (3)
O1—Zn1—O2—C1092.13 (14)C4—C5—N1—C8179.9 (2)
O4—Zn1—O2—C10−69.29 (14)C4—C5—N1—C93.2 (3)
O5—Zn1—O2—C1010.0 (3)C6—C5—N1—C80.7 (3)
N3—Zn1—O2—C10−161.42 (14)C6—C5—N1—C9−176.0 (2)
O1—Zn1—O4—C1i4.3 (3)C7—C6—C5—N1179.6 (2)
O2—Zn1—O4—C1i89.10 (17)C7—C6—C5—C40.3 (3)
O5—Zn1—O4—C1i−72.31 (17)C2—C7—C6—C5−0.2 (3)
N3—Zn1—O4—C1i−169.16 (17)C12—C11—C10—O2−169.73 (18)
O1—Zn1—O5—C10i−88.02 (18)C12—C11—C10—O5i9.4 (3)
O2—Zn1—O5—C10i−5.8 (3)C16—C11—C10—O27.8 (3)
O4—Zn1—O5—C10i73.84 (18)C16—C11—C10—O5i−173.06 (17)
N3—Zn1—O5—C10i165.75 (17)C10—C11—C12—C13175.00 (17)
O1—Zn1—N3—C1975.41 (13)C16—C11—C12—C13−2.7 (3)
O1—Zn1—N3—C23−108.69 (13)C10—C11—C16—C15−175.32 (17)
O2—Zn1—N3—C19−17.02 (14)C12—C11—C16—C152.3 (3)
O2—Zn1—N3—C23158.88 (13)C11—C12—C13—C14−0.2 (3)
O4—Zn1—N3—C19−106.75 (13)C13—C14—N2—C17171.8 (2)
O4—Zn1—N3—C2369.15 (13)C13—C14—N2—C181.6 (3)
O5—Zn1—N3—C19165.77 (13)C15—C14—N2—C17−9.6 (3)
O5—Zn1—N3—C23−18.33 (14)C15—C14—N2—C18−179.8 (2)
Zn1—O1—C1—O4i−2.1 (2)N2—C14—C13—C12−178.00 (19)
Zn1—O1—C1—C2176.98 (10)C15—C14—C13—C123.3 (3)
Zn1—O2—C10—O5i−5.9 (3)N2—C14—C15—C16177.68 (19)
Zn1—O2—C10—C11173.11 (11)C13—C14—C15—C16−3.7 (3)
Zn1—N3—C19—C20176.95 (13)C14—C15—C16—C110.9 (3)
Zn1—N3—C23—C22−175.48 (15)N3—C19—C20—C21−1.0 (3)
C19—N3—C23—C220.6 (3)N3—C19—C20—C24170.73 (17)
C23—N3—C19—C201.0 (2)C19—C20—C21—C22−0.5 (3)
C24—N4—C25—C26−86.0 (3)C24—C20—C21—C22−172.34 (19)
C27—N4—C25—C2685.3 (3)C19—C20—C24—O3−111.7 (2)
C24—N4—C27—C28−110.6 (2)C19—C20—C24—N467.5 (2)
C25—N4—C27—C2878.8 (3)C21—C20—C24—O359.8 (3)
C3—C2—C1—O1177.84 (16)C21—C20—C24—N4−121.0 (2)
C3—C2—C1—O4i−3.0 (2)C23—C22—C21—C202.0 (3)
C7—C2—C1—O1−2.8 (2)N3—C23—C22—C21−2.0 (3)
C7—C2—C1—O4i176.30 (16)O3—C24—N4—C251.9 (3)
C1—C2—C3—C4179.40 (17)O3—C24—N4—C27−168.7 (2)
C7—C2—C3—C40.1 (3)C20—C24—N4—C25−177.29 (19)
C1—C2—C7—C6−179.29 (17)C20—C24—N4—C2712.1 (3)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C23—H23···O50.932.543.122 (2)121
C8—H8A···Cg3ii0.962.773.629 (3)150

Symmetry codes: (ii) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2669).

References

  • Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.
  • Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  • Hökelek, T., Necefoğlu, H. & Balcı, M. (1995). Acta Cryst. C51, 2020–2023.
  • Hökelek, T., Yılmaz, F., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009a). Acta Cryst. E65, m955–m956. [PMC free article] [PubMed]
  • Hökelek, T., Yılmaz, F., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009b). Acta Cryst. E65, m1328–m1329. [PMC free article] [PubMed]
  • Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108–111. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Speier, G. & Fulop, V. (1989). J. Chem. Soc. Dalton Trans. pp. 2331–2333.
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Usubaliev, B. T., Movsumov, E. M., Musaev, F. N., Nadzhafov, G. N., Amiraslanov, I. R. & Mamedov, Kh. S. (1980). Koord. Khim. 6, 1091–1096.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography