PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): m1659.
Published online 2009 November 21. doi:  10.1107/S1600536809049149
PMCID: PMC2971941

Dichlorido(2,9-dimethyl-1,10-phenanthroline)manganese(II) hemihydrate

Abstract

In the title compound, [MnCl2(C14H12N2)]·0.5H2O, all of the non-H atoms apart from the Cl atom lie on a mirror plane and the methyl H atoms are disordered over two sites of equal occupancy about the mirror plane. The MnII ion is coordinated in a distorted tetra­hedral environment by two N atoms of the phenanthroline ligand and two chloride ions. A half-occupancy solvent water mol­ecule lies on a mirror plane and close to an inversion center.

Related literature

For related crystal structures, see: McCann et al. (1998 [triangle]); Pan & Xu (2005 [triangle]); Xu et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1659-scheme1.jpg

Experimental

Crystal data

  • [MnCl2(C14H12N2)]·0.5H2O
  • M r = 343.10
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1659-efi1.jpg
  • a = 18.763 (4) Å
  • b = 7.7343 (15) Å
  • c = 11.362 (2) Å
  • β = 101.532 (3)°
  • V = 1615.5 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.14 mm−1
  • T = 293 K
  • 0.31 × 0.23 × 0.19 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008a [triangle]) T min = 0.719, T max = 0.813
  • 4794 measured reflections
  • 1511 independent reflections
  • 1199 reflections with I > 2σ(I)
  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044
  • wR(F 2) = 0.134
  • S = 1.01
  • 1511 reflections
  • 120 parameters
  • .
  • Δρmax = 0.59 e Å−3
  • Δρmin = −0.31 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT-Plus (Bruker, 2001 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008b [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809049149/lh2953sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809049149/lh2953Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

1,10-phenanthroline is a good bidentate chelating ligand and here, we present the crystal structure of the title complex based on 2,9-dimethyl-1,10-phenanthroline.

The crystal structure of the title compound is shown in Fig. 1. The coordination environment of the MnII ion is distorted tetrahedral, in which two sites are occupied by the two N atoms of the chelating 2,9-dimethyl-1,10-phenanthroline ligand and the other two from two chloride ions. For Mn—N and Mn—Cl bond lengths in other manganese biphenanthroline complexes, see e.g. McCann, et al. (1998); Pan & Xu (2005); Xu et al. (2009). The location of the water H atoms is such that they are disordered over several sites imposed by the crystal symmetry and hence any potential hydrogen bonding is not discussed.

Experimental

A mixture of 2,9-dimethyl-1,10-phenanthroline, MnCl2.4H2O (1:2, molar ratio) and water (20 ml) was sealed in a Teflon-lined autoclave (25 ml) and heated 393 K for two days. Upon cooling slowly and opening the bomb, yellow crystals suitable for X-ray diffraction were obtained with a yield about 40% (based on phenanthroline).

Refinement

All H atoms bonded to C atoms were included using the HFIX commands in SHELXL-97 (Sheldrick, 2008b/i>) with C—H distances of 0.93 and 0.96 Å, and were allowed for as riding atoms with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(Cmethyl). The H atoms of the disordered water molecule were found in a difference Fourier map and were refined as riding with O-H fixed at 0.85 Å and Uiso(H) = 1.2Ueq(O).

Figures

Fig. 1.
The molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. The disordered water molecule and all the H-atoms are omitted for clarity.

Crystal data

[MnCl2(C14H12N2)]·0.5H2OF(000) = 696
Mr = 343.10Dx = 1.411 Mg m3
Monoclinic, C2/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yCell parameters from 1089 reflections
a = 18.763 (4) Åθ = 2.9–26.8°
b = 7.7343 (15) ŵ = 1.14 mm1
c = 11.362 (2) ÅT = 293 K
β = 101.532 (3)°Block, yellow
V = 1615.5 (5) Å30.31 × 0.23 × 0.19 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer1511 independent reflections
Radiation source: fine-focus sealed tube1199 reflections with I > 2σ(I)
graphiteRint = 0.020
[var phi] and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 2008a)h = −22→22
Tmin = 0.719, Tmax = 0.813k = −8→9
4794 measured reflectionsl = −13→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134w = 1/[σ2(Fo2) + (0.1015P)2] where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
1511 reflectionsΔρmax = 0.59 e Å3
120 parametersΔρmin = −0.31 e Å3
0 restraints

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Mn10.35177 (3)0.00000.27709 (5)0.0558 (3)
Cl10.40493 (4)0.25282 (10)0.24304 (8)0.0815 (3)
O10.5351 (5)1.00000.0528 (9)0.155 (4)0.50
H2A0.52570.94260.11280.186*0.25
H1A0.57450.95580.03990.186*0.25
N10.30817 (15)0.00000.4374 (3)0.0555 (8)
N20.24030 (17)0.00000.2034 (3)0.0601 (8)
C10.3433 (2)0.00000.5521 (4)0.0625 (10)
C20.3066 (2)0.00000.6486 (4)0.0715 (12)
H20.33290.00000.72720.086*
C30.2337 (2)0.00000.6273 (4)0.0715 (12)
H30.20890.00000.69050.086*
C40.1951 (2)0.00000.5056 (3)0.0604 (10)
C50.1191 (2)0.00000.4745 (4)0.0781 (13)
H50.09190.00000.53460.094*
C60.0848 (2)0.00000.3584 (4)0.0768 (13)
H60.03420.00000.33990.092*
C70.1240 (2)0.00000.2635 (4)0.0655 (11)
C80.0910 (3)0.00000.1374 (4)0.0840 (15)
H80.04060.00000.11360.101*
C90.1330 (3)0.00000.0535 (4)0.0875 (15)
H90.11130.0000−0.02760.105*
C100.2073 (3)0.00000.0872 (4)0.0703 (11)
C110.1985 (2)0.00000.2896 (3)0.0562 (9)
C120.2350 (2)0.00000.4153 (3)0.0532 (9)
C130.4239 (2)0.00000.5734 (4)0.0819 (14)
H13A0.4397−0.07240.51500.123*0.50
H13B0.4431−0.04340.65250.123*0.50
H13C0.44100.11580.56660.123*0.50
C140.2542 (3)0.0000−0.0069 (4)0.0933 (17)
H14A0.27130.1152−0.01630.140*0.50
H14B0.2260−0.0395−0.08200.140*0.50
H14C0.2950−0.07560.01810.140*0.50

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Mn10.0481 (4)0.0703 (5)0.0501 (4)0.0000.0127 (3)0.000
Cl10.0781 (6)0.0818 (7)0.0876 (6)−0.0094 (4)0.0235 (4)0.0054 (4)
O10.108 (7)0.226 (12)0.134 (9)0.0000.031 (6)0.000
N10.0413 (15)0.074 (2)0.0503 (17)0.0000.0063 (13)0.000
N20.0572 (17)0.073 (2)0.0483 (17)0.0000.0069 (14)0.000
C10.056 (2)0.076 (3)0.053 (2)0.0000.0032 (17)0.000
C20.061 (2)0.100 (4)0.049 (2)0.000−0.0002 (18)0.000
C30.064 (2)0.101 (4)0.050 (2)0.0000.0127 (19)0.000
C40.053 (2)0.077 (3)0.052 (2)0.0000.0100 (17)0.000
C50.055 (2)0.112 (4)0.071 (3)0.0000.020 (2)0.000
C60.045 (2)0.110 (4)0.073 (3)0.0000.006 (2)0.000
C70.047 (2)0.080 (3)0.064 (3)0.000−0.0017 (18)0.000
C80.062 (3)0.111 (4)0.070 (3)0.000−0.008 (2)0.000
C90.078 (3)0.120 (4)0.056 (3)0.000−0.010 (2)0.000
C100.078 (3)0.076 (3)0.054 (2)0.0000.006 (2)0.000
C110.051 (2)0.070 (3)0.0456 (19)0.0000.0040 (16)0.000
C120.053 (2)0.054 (2)0.052 (2)0.0000.0073 (16)0.000
C130.049 (2)0.127 (4)0.064 (3)0.0000.000 (2)0.000
C140.095 (3)0.133 (5)0.052 (2)0.0000.014 (2)0.000

Geometric parameters (Å, °)

Mn1—N22.092 (3)C5—C61.347 (6)
Mn1—N12.140 (3)C5—H50.9300
Mn1—Cl12.2633 (9)C6—C71.421 (6)
Mn1—Cl1i2.2633 (9)C6—H60.9300
O1—O1ii1.59 (2)C7—C111.371 (5)
O1—H2A0.8610C7—C81.443 (6)
O1—H1A0.8530C8—C91.353 (7)
N1—C11.338 (5)C8—H80.9300
N1—C121.345 (5)C9—C101.370 (7)
N2—C101.342 (5)C9—H90.9300
N2—C111.371 (5)C10—C141.514 (7)
C1—C21.407 (6)C11—C121.454 (5)
C1—C131.482 (6)C13—H13A0.9600
C2—C31.341 (6)C13—H13B0.9600
C2—H20.9300C13—H13C0.9600
C3—C41.428 (6)C14—H14A0.9600
C3—H30.9300C14—H14B0.9600
C4—C121.387 (5)C14—H14C0.9600
C4—C51.399 (6)
N2—Mn1—N179.57 (12)C7—C6—H6119.2
N2—Mn1—Cl1111.79 (4)C11—C7—C6119.7 (4)
N1—Mn1—Cl1113.70 (4)C11—C7—C8115.5 (4)
N2—Mn1—Cl1i111.79 (4)C6—C7—C8124.8 (4)
N1—Mn1—Cl1i113.70 (4)C9—C8—C7120.4 (4)
Cl1—Mn1—Cl1i119.53 (5)C9—C8—H8119.8
O1ii—O1—H2A109.0C7—C8—H8119.8
O1ii—O1—H1A119.0C8—C9—C10120.4 (4)
H2A—O1—H1A104.5C8—C9—H9119.8
C1—N1—C12117.9 (3)C10—C9—H9119.8
C1—N1—Mn1129.1 (3)N2—C10—C9121.2 (4)
C12—N1—Mn1113.0 (2)N2—C10—C14118.4 (4)
C10—N2—C11119.1 (3)C9—C10—C14120.3 (4)
C10—N2—Mn1128.4 (3)C7—C11—N2123.3 (3)
C11—N2—Mn1112.5 (2)C7—C11—C12118.2 (3)
N1—C1—C2122.5 (3)N2—C11—C12118.5 (3)
N1—C1—C13116.6 (4)N1—C12—C4123.0 (3)
C2—C1—C13121.0 (4)N1—C12—C11116.5 (3)
C3—C2—C1120.0 (4)C4—C12—C11120.5 (3)
C3—C2—H2120.0C1—C13—H13A109.5
C1—C2—H2120.0C1—C13—H13B109.5
C2—C3—C4118.5 (4)H13A—C13—H13B109.5
C2—C3—H3120.8C1—C13—H13C109.5
C4—C3—H3120.8H13A—C13—H13C109.5
C12—C4—C5119.2 (4)H13B—C13—H13C109.5
C12—C4—C3118.2 (4)C10—C14—H14A109.5
C5—C4—C3122.6 (4)C10—C14—H14B109.5
C6—C5—C4120.7 (4)H14A—C14—H14B109.5
C6—C5—H5119.7C10—C14—H14C109.5
C4—C5—H5119.7H14A—C14—H14C109.5
C5—C6—C7121.7 (4)H14B—C14—H14C109.5
C5—C6—H6119.2

Symmetry codes: (i) x, −y, z; (ii) −x+1, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2953).

References

  • Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
  • McCann, S., McCann, M., Casey, M. T., Jackman, M., Devereux, M. & Mckee, V. (1998). Inorg. Chim. Acta, 279, 24–29.
  • Pan, T.-T. & Xu, D.-J. (2005). Acta Cryst. E61, m740–m742.
  • Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.
  • Sheldrick, G. M. (2008b). Acta Cryst. A64, 112–122. [PubMed]
  • Xu, M.-L., Sun, S.-B., Li, X.-Y. & Che, G.-B. (2009). Acta Cryst. E65, m136. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography