PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): m1658.
Published online 2009 November 21. doi:  10.1107/S1600536809049137
PMCID: PMC2971939

Aqua­{6,6-dimeth­oxy-2,2′-[propane-1,3-diylbis(nitrilo­methyl­idyne)]diphenolato-κ4 O,N,N′,O′}copper(II) acetonitrile solvate

Abstract

In the title compound, [Cu(C19H20N2O4)(H2O)]·C2H3N, the CuII ion is coordinated by two N and two O atoms from the tetra­dentate Schiff base ligand, which contains a propyl­ene fragment disordered over two conformations in a 0.64 (1):0.36 (1) ratio, and one O atom from the water mol­ecule in a distorted square-pyramidal geometry. In the crystal structure, inter­molecular O—H(...)O hydrogen bonds link the mol­ecules into chains along the a axis.

Related literature

For related crystal structures, see: Nathan et al. (2003 [triangle]); Saha et al. (2007 [triangle]); Xing (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1658-scheme1.jpg

Experimental

Crystal data

  • [Cu(C19H20N2O4)(H2O)]·C2H3N
  • M r = 462.98
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1658-efi1.jpg
  • a = 5.4003 (9) Å
  • b = 19.155 (4) Å
  • c = 10.3891 (18) Å
  • β = 98.862 (3)°
  • V = 1061.8 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.07 mm−1
  • T = 273 K
  • 0.15 × 0.13 × 0.09 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007 [triangle]) T min = 0.857, T max = 0.910
  • 6127 measured reflections
  • 4000 independent reflections
  • 3145 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048
  • wR(F 2) = 0.128
  • S = 1.03
  • 4000 reflections
  • 274 parameters
  • 1 restraint
  • .
  • Δρmax = 0.40 e Å−3
  • Δρmin = −0.58 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1570 Friedel pairs
  • Flack parameter: 0.00 (2)

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT-Plus (Bruker, 2001 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809049137/cv2650sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809049137/cv2650Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

In continuation of our studies of tetradentate Shiff-base ligands and their complexes (Xing, 2009), we present here the title compound, (I).

In (I) (Fig. 1), the coordination sphere of the CuII ion can be described as a distorted square-pyramidal one, in which the four basal positions are occupied by two N atoms and two O atoms from the tetradentate Schiff-base ligand, and the fifth apical site is occupied by the O atom of the coordinated water molecule. The CuII ion is out of the plane formed by N2O2 unit at 0.102Å towards the Cu—OH2O bond. The average Cu—N, Cu—OSchiff base, and the Cu—Oaqua bond lengths are 2.017 (4), 1.956 (4) and 2.276 (4) Å, respectively, which are all in agreement with the corresponding distances found in others Schiff base complexes with Cu (Nathan, et al., 2003; Saha, et al., 2007; Xing, 2009).

Intermolecular O—H···O hydrogen bonds (Table 1) link molecules related by translation along axis a into chains.

Experimental

The Schiff base ligand was synthesized by condensation of propyl diamine and 3-methoxyl-2-hydroxy-benzaldehyde with the ratio 1:2 in ethanol. The title complex was synthesized by reacting Cu(ClO4)2.6H2O and the schiff-base ligand (1:1, molar ratio) in acetonitrile. The mixture was stirred for for about 10 min at room temperature, then filtered, and then the filtrate was allowed to slow evaporate undisturbed for ten days to afford blue crystals suitable for X-ray diffraction with a yield about 60%.

Refinement

C-bound H atoms were geometrically positioned with C—H distances of 0.93, 0.96 and 0.97 Å, respectively, and were refined as riding, with Uiso(H) = 1.2Ueq(C). For the H atom of the water molecule, they were found from difference Fourier maps, but placed in idealized positions with O—H = 0.82 Å, and refined as riding, with Uiso(H) = 1.5Ueq(O). Thepropylene fragment was disordered between two conformations with the occupancies refined to 0.64 (1) and 0.36 (1), respectively.

Figures

Fig. 1.
The molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. Only major part of the disordered atom C10 is shown. H-atoms are omitted for clarity.

Crystal data

[Cu(C19H20N2O4)(H2O)]·C2H3NF(000) = 482
Mr = 462.98Dx = 1.448 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 5.4003 (9) ÅCell parameters from 1983 reflections
b = 19.155 (4) Åθ = 2.9–22.0°
c = 10.3891 (18) ŵ = 1.07 mm1
β = 98.862 (3)°T = 273 K
V = 1061.8 (3) Å3Block, green
Z = 20.15 × 0.13 × 0.09 mm

Data collection

Bruker APEXII CCD area-detector diffractometer4000 independent reflections
Radiation source: fine-focus sealed tube3145 reflections with I > 2σ(I)
graphiteRint = 0.027
[var phi] and ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 2007)h = −6→7
Tmin = 0.857, Tmax = 0.910k = −17→24
6127 measured reflectionsl = −13→10

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048w = 1/[σ2(Fo2) + (0.061P)2 + 0.2306P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.128(Δ/σ)max = 0.001
S = 1.03Δρmax = 0.40 e Å3
4000 reflectionsΔρmin = −0.58 e Å3
274 parametersAbsolute structure: Flack (1983), 1570 Friedel pairs
1 restraintFlack parameter: 0.00 (2)
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Cu10.91053 (9)0.74577 (4)0.52909 (5)0.04410 (17)
N11.0195 (8)0.7458 (5)0.3513 (4)0.0637 (11)
N21.1012 (9)0.8326 (3)0.5920 (5)0.0580 (12)
O10.6757 (7)0.6700 (2)0.4746 (3)0.0532 (9)
O20.7350 (5)0.7475 (3)0.6805 (3)0.0516 (7)
O31.2273 (8)0.6746 (2)0.6203 (4)0.0565 (10)
H3B1.27520.64830.56670.06 (2)*
H3A1.34260.69500.66590.09 (3)*
O40.3574 (8)0.5659 (2)0.4627 (5)0.0743 (12)
O50.4665 (8)0.7216 (2)0.8637 (4)0.0733 (14)
C10.4793 (10)0.5744 (3)0.3569 (5)0.0539 (13)
C20.6506 (9)0.6313 (3)0.3692 (5)0.0481 (12)
C30.7817 (11)0.6420 (3)0.2649 (5)0.0573 (14)
C40.7478 (14)0.5969 (4)0.1560 (6)0.0737 (19)
H40.84110.60380.08890.088*
C50.5837 (14)0.5444 (4)0.1482 (6)0.0773 (19)
H50.56080.51600.07480.093*
C60.4434 (13)0.5316 (3)0.2509 (6)0.0653 (16)
H60.32970.49490.24580.078*
C70.9537 (11)0.6988 (4)0.2631 (5)0.0657 (16)
H71.02800.70250.18840.079*
C80.1745 (12)0.5122 (4)0.4587 (7)0.0771 (18)
H8A0.23160.47140.41840.116*
H8B0.01970.52790.40920.116*
H8C0.14880.50110.54580.116*
C91.2883 (16)0.8635 (5)0.5191 (8)0.0919 (16)0.355 (10)
H9A1.22330.90850.48710.110*0.355 (10)
H9B1.43740.87270.58170.110*0.355 (10)
C9'1.2883 (16)0.8635 (5)0.5191 (8)0.0919 (16)0.645 (10)
H9'11.44330.83730.53730.110*0.645 (10)
H9'21.32270.91120.54820.110*0.645 (10)
C101.365 (3)0.8290 (10)0.4150 (19)0.073 (3)0.355 (10)
H10A1.48800.79500.45310.088*0.355 (10)
H10B1.45630.86330.37200.088*0.355 (10)
C10A1.198 (2)0.8632 (5)0.3764 (10)0.073 (3)0.645 (10)
H10C1.02570.87920.36080.088*0.645 (10)
H10D1.29760.89600.33480.088*0.645 (10)
C111.2121 (15)0.7941 (5)0.3158 (7)0.0919 (16)0.355 (10)
H11A1.31950.76770.26690.110*0.355 (10)
H11B1.12710.82890.25720.110*0.355 (10)
C11'1.2121 (15)0.7941 (5)0.3158 (7)0.0919 (16)0.645 (10)
H11C1.37700.77430.34350.110*0.645 (10)
H11D1.18910.79930.22190.110*0.645 (10)
C121.0861 (11)0.8625 (3)0.7019 (6)0.0601 (14)
H121.19020.90100.72160.072*
C130.9337 (11)0.8453 (3)0.7972 (5)0.0549 (13)
C140.7679 (9)0.7890 (3)0.7800 (5)0.0481 (12)
C150.6222 (10)0.7774 (3)0.8845 (5)0.0575 (14)
C160.6491 (12)0.8209 (4)0.9914 (5)0.0717 (18)
H160.55290.81291.05680.086*
C170.8133 (16)0.8756 (4)1.0037 (6)0.086 (2)
H170.82630.90441.07650.103*
C180.9574 (14)0.8881 (4)0.9103 (6)0.0734 (17)
H181.07190.92460.92020.088*
C190.3062 (12)0.7070 (4)0.9568 (6)0.079 (2)
H19A0.19940.74640.96380.119*
H19B0.40550.69791.03990.119*
H19C0.20530.66680.92940.119*
N30.4416 (17)0.4878 (4)0.7839 (7)0.118 (3)
C200.7826 (12)0.5758 (4)0.7570 (7)0.0726 (17)
H20A0.79750.57910.66630.109*
H20B0.93940.56080.80540.109*
H20C0.73940.62070.78810.109*
C210.5916 (15)0.5266 (4)0.7737 (6)0.0719 (18)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0424 (3)0.0463 (3)0.0456 (3)−0.0022 (4)0.01310 (18)−0.0013 (4)
N10.069 (2)0.077 (3)0.047 (2)−0.014 (4)0.0168 (17)0.007 (4)
N20.060 (3)0.045 (3)0.071 (3)−0.002 (2)0.017 (2)0.002 (2)
O10.0527 (19)0.061 (2)0.0478 (19)−0.0123 (18)0.0157 (15)−0.0158 (17)
O20.0521 (15)0.0582 (19)0.0477 (16)−0.009 (3)0.0178 (12)−0.016 (3)
O30.055 (2)0.056 (2)0.059 (2)0.008 (2)0.011 (2)−0.006 (2)
O40.071 (3)0.070 (3)0.087 (3)−0.025 (2)0.028 (2)−0.027 (2)
O50.065 (2)0.107 (4)0.053 (2)−0.016 (2)0.0255 (19)−0.013 (2)
C10.053 (3)0.049 (3)0.058 (3)0.005 (2)0.000 (2)−0.009 (2)
C20.041 (3)0.052 (3)0.051 (3)0.010 (2)0.005 (2)−0.004 (2)
C30.068 (3)0.067 (4)0.037 (2)0.018 (3)0.009 (2)0.001 (2)
C40.093 (5)0.079 (5)0.049 (3)0.019 (4)0.013 (3)−0.008 (3)
C50.105 (5)0.060 (4)0.064 (4)0.010 (4)0.003 (4)−0.020 (3)
C60.069 (4)0.051 (4)0.073 (4)0.013 (3)0.001 (3)−0.012 (3)
C70.069 (4)0.088 (5)0.044 (3)0.002 (3)0.023 (3)0.007 (3)
C80.067 (4)0.056 (4)0.109 (5)−0.014 (3)0.017 (4)−0.014 (4)
C90.101 (4)0.092 (4)0.091 (4)−0.037 (3)0.039 (3)−0.004 (3)
C9'0.101 (4)0.092 (4)0.091 (4)−0.037 (3)0.039 (3)−0.004 (3)
C100.075 (6)0.062 (6)0.089 (6)−0.005 (4)0.031 (5)0.034 (5)
C10A0.075 (6)0.062 (6)0.089 (6)−0.005 (4)0.031 (5)0.034 (5)
C110.101 (4)0.092 (4)0.091 (4)−0.037 (3)0.039 (3)−0.004 (3)
C11'0.101 (4)0.092 (4)0.091 (4)−0.037 (3)0.039 (3)−0.004 (3)
C120.065 (3)0.038 (3)0.075 (4)−0.005 (3)0.006 (3)−0.005 (3)
C130.062 (3)0.041 (3)0.059 (3)0.009 (3)0.000 (3)−0.005 (2)
C140.045 (3)0.054 (3)0.044 (3)0.011 (2)0.004 (2)0.001 (2)
C150.050 (3)0.072 (4)0.050 (3)0.011 (3)0.006 (2)−0.007 (2)
C160.076 (4)0.099 (6)0.040 (3)0.017 (4)0.010 (3)−0.010 (3)
C170.124 (6)0.078 (5)0.054 (4)0.020 (5)0.004 (4)−0.023 (3)
C180.101 (5)0.051 (4)0.065 (4)0.006 (4)0.001 (4)−0.013 (3)
C190.068 (4)0.116 (6)0.058 (3)0.007 (4)0.026 (3)0.019 (4)
N30.153 (7)0.114 (7)0.096 (5)−0.044 (6)0.046 (5)0.025 (5)
C200.081 (4)0.061 (4)0.079 (4)0.004 (3)0.024 (3)0.010 (3)
C210.109 (5)0.065 (4)0.047 (3)0.002 (4)0.031 (3)0.007 (3)

Geometric parameters (Å, °)

Cu1—O11.954 (4)C8—H8C0.9600
Cu1—O21.958 (3)C9—C101.39 (2)
Cu1—N22.012 (5)C9—H9A0.9700
Cu1—N12.023 (4)C9—H9B0.9700
Cu1—O32.276 (4)C10—C111.39 (2)
N1—C71.294 (9)C10—H10A0.9700
N1—C111.480 (9)C10—H10B0.9700
N2—C121.292 (7)C10A—H10C0.9700
N2—C91.476 (8)C10A—H10D0.9700
O1—C21.311 (6)C11—H11A0.9700
O2—C141.294 (7)C11—H11B0.9700
O3—H3B0.8219C12—C131.420 (8)
O3—H3A0.8213C12—H120.9300
O4—C11.375 (6)C13—C141.396 (8)
O4—C81.421 (7)C13—C181.422 (8)
O5—C151.357 (7)C14—C151.453 (7)
O5—C191.422 (6)C15—C161.378 (9)
C1—C61.363 (8)C16—C171.365 (11)
C1—C21.422 (8)C16—H160.9300
C2—C31.399 (7)C17—C181.355 (9)
C3—C41.413 (8)C17—H170.9300
C3—C71.433 (9)C18—H180.9300
C4—C51.334 (10)C19—H19A0.9600
C4—H40.9300C19—H19B0.9600
C5—C61.422 (9)C19—H19C0.9600
C5—H50.9300N3—C211.117 (9)
C6—H60.9300C20—C211.428 (9)
C7—H70.9300C20—H20A0.9600
C8—H8A0.9600C20—H20B0.9600
C8—H8B0.9600C20—H20C0.9600
O1—Cu1—O282.67 (17)N2—C9—H9A107.0
O1—Cu1—N2170.30 (18)C10—C9—H9B107.0
O2—Cu1—N290.7 (2)N2—C9—H9B107.0
O1—Cu1—N190.2 (2)H9A—C9—H9B106.7
O2—Cu1—N1168.09 (15)C9—C10—C11126.4 (14)
N2—Cu1—N195.2 (3)C9—C10—H10A105.7
O1—Cu1—O395.05 (17)C11—C10—H10A105.7
O2—Cu1—O395.83 (17)C9—C10—H10B105.7
N2—Cu1—O392.6 (2)C11—C10—H10B105.7
N1—Cu1—O394.3 (2)H10A—C10—H10B106.2
C7—N1—C11112.6 (5)H10C—C10A—H10D107.7
C7—N1—Cu1124.0 (5)C10—C11—N1118.5 (8)
C11—N1—Cu1122.8 (5)C10—C11—H11A107.7
C12—N2—C9114.6 (6)N1—C11—H11A107.7
C12—N2—Cu1123.7 (4)C10—C11—H11B107.7
C9—N2—Cu1121.4 (4)N1—C11—H11B107.7
C2—O1—Cu1129.8 (3)H11A—C11—H11B107.1
C14—O2—Cu1129.0 (4)N2—C12—C13129.4 (6)
Cu1—O3—H3B112.4N2—C12—H12115.3
Cu1—O3—H3A114.2C13—C12—H12115.3
H3B—O3—H3A113.1C14—C13—C12121.4 (5)
C1—O4—C8118.6 (5)C14—C13—C18121.7 (6)
C15—O5—C19118.2 (5)C12—C13—C18117.0 (6)
C6—C1—O4123.3 (6)O2—C14—C13125.6 (5)
C6—C1—C2122.9 (6)O2—C14—C15118.7 (5)
O4—C1—C2113.8 (4)C13—C14—C15115.7 (5)
O1—C2—C3124.4 (5)O5—C15—C16126.3 (6)
O1—C2—C1119.3 (4)O5—C15—C14113.2 (5)
C3—C2—C1116.3 (5)C16—C15—C14120.5 (6)
C2—C3—C4120.8 (6)C17—C16—C15121.8 (6)
C2—C3—C7121.9 (5)C17—C16—H16119.1
C4—C3—C7117.3 (6)C15—C16—H16119.1
C5—C4—C3120.8 (6)C18—C17—C16120.3 (6)
C5—C4—H4119.6C18—C17—H17119.9
C3—C4—H4119.6C16—C17—H17119.9
C4—C5—C6120.7 (6)C17—C18—C13120.1 (7)
C4—C5—H5119.7C17—C18—H18119.9
C6—C5—H5119.6C13—C18—H18119.9
C1—C6—C5118.5 (7)O5—C19—H19A109.5
C1—C6—H6120.8O5—C19—H19B109.5
C5—C6—H6120.8H19A—C19—H19B109.5
N1—C7—C3128.8 (5)O5—C19—H19C109.5
N1—C7—H7115.6H19A—C19—H19C109.5
C3—C7—H7115.6H19B—C19—H19C109.5
O4—C8—H8A109.5C21—C20—H20A109.5
O4—C8—H8B109.5C21—C20—H20B109.5
H8A—C8—H8B109.5H20A—C20—H20B109.5
O4—C8—H8C109.5C21—C20—H20C109.5
H8A—C8—H8C109.5H20A—C20—H20C109.5
H8B—C8—H8C109.5H20B—C20—H20C109.5
C10—C9—N2121.3 (9)N3—C21—C20178.5 (8)
C10—C9—H9A107.0

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3A···O2i0.822.333.055 (6)148
O3—H3A···O5i0.822.122.805 (6)140
O3—H3B···O1i0.822.533.048 (5)122
O3—H3B···O4i0.822.002.805 (6)166

Symmetry codes: (i) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2650).

References

  • Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Nathan, L. C., Koehne, J. E., Gilmore, J. M., Hannibal, K. A., Dewhirst, W. E. & Mai, T. D. (2003). Polyhedron, 22, 887–894.
  • Saha, P. K., Dutta, B., Jana, S., Bera, R., Saha, S., Okamoto, K. & Koner, S. (2007). Polyhedron, 26, 563–571.
  • Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Xing, J. (2009). Acta Cryst. E65, m469. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography