PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): m1519–m1520.
Published online 2009 November 7. doi:  10.1107/S1600536809045826
PMCID: PMC2971936

catena-Poly[[[aqua­silver(I)]-μ-1,1′-(butane-1,4-di­yl)di-1H-imidazole-κ2 N 3:N 3′] hemi(biphenyl-4,4′-dicarboxyl­ate) dihydrate]

Abstract

In the title compound, {[Ag(C10H14N4)(H2O)](C14H8O4)0.5·2H2O}n, the AgI ion is three-coordinated by two N atoms from two independent 1,1′-(butane-1,4-di­yl)di-1H-imidazole (BBI) ligands and one water O atom in a distorted T-shaped coordination geometry. The biphenyl-4,4′-dicarboxyl­ate (BPDC) dianions do not coordinate to AgI ions but act as counter-ions. The AgI ions are linked by BBI ligands, forming a zigzag chain. These chains are linked into a two-dimensional supra­molecular architecture by O—H(...)O hydrogen-bonding inter­actions between water mol­ecules and carboxyl­ate O atoms of the BPDC dianions.

Related literature

For general background to the design and construction of metal-organic frameworks, see: Kitagawa et al. (2004 [triangle]); Ma et al. (2009 [triangle]); Li et al. (2005 [triangle]). For a related structure, see: Ma et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1519-scheme1.jpg

Experimental

Crystal data

  • [Ag(C10H14N4)(H2O)](C14H8O4)0.5·2H2O
  • M r = 472.27
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1519-efi1.jpg
  • a = 9.7685 (6) Å
  • b = 10.0659 (6) Å
  • c = 10.9224 (7) Å
  • α = 80.190 (1)°
  • β = 68.898 (1)°
  • γ = 74.775 (1)°
  • V = 963.36 (10) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.08 mm−1
  • T = 293 K
  • 0.23 × 0.16 × 0.14 mm

Data collection

  • Bruker APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.81, T max = 0.86
  • 5289 measured reflections
  • 3569 independent reflections
  • 3422 reflections with I > 2σ(I)
  • R int = 0.011

Refinement

  • R[F 2 > 2σ(F 2)] = 0.023
  • wR(F 2) = 0.058
  • S = 1.06
  • 3569 reflections
  • 267 parameters
  • 9 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.36 e Å−3
  • Δρmin = −0.42 e Å−3

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809045826/ci2938sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809045826/ci2938Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author thanks Baicheng Normal College for supporting this work.

supplementary crystallographic information

Comment

Design of effective ligands and the proper choice of metal centers are the keys to design and construct novel metal-organic frameworks (Kitagawa et al., 2004; Ma et al., 2009). These complexes can be specially designed by careful selection of metal cations with preferred coordination geometries, nature of the anions, structures of connecting ligands, and the reaction conditions (Li et al., 2005). In this contribution, we selected biphenyl-4,4'-dicarboxylic acid (H2BPDC) as an organic carboxylate anion and 1,1'-(butane-1,4-diyl)di-1H-imidazole (BBI) as a N-donor neutral ligand, generating a coordination compound, [Ag(BPDC)0.5(H2O)(BBI)].2H2O, which is reported here.

In the title compound, each AgI ion is three-coordinated by two N atoms from two independent half-units of the BBI ligands and one water molecule in a distorted T-shaped coordination geometry. The Ag—N and Ag—O distances are comparable to those found in other crystallographically characterized AgI complexes (Ma et al., 2005). The adjacent AgI ions are linked by BBI ligands to give a one-dimensional zigzag chain. Biphenyl-4,4'-dicarboxylate anions, acting as counterions, have no contribution to the formation of the final structure (Fig. 1). However, there are intermolecular O—H···O hydrogen bonding interactions among water molecules and BPDC anions. These hydrogen bonds extend zigzag chains into a two-dimensional supramolecular architecture.

Experimental

To a mixture of biphenyl-4,4'-dicarboxylic acid (0.0484 g, 0.2 mmol) and Ag2CO3 (0.0275 g, 0.1 mmol) in water was added 1,1'-(butane-1,4-diyl)di-1H-imidazole (0.2 mmol, 0.038 g) with constant stirring. After the sample was stirred for 10 min, the precipitate was dissolved by dropwise addition of aqueous NH3 solution. Colourless crystals were obtained from the filtrate by slow evaporation after standing in the dark for several days.

Refinement

Independent atom C5 of the butyl linkage is disordered over two positions with occupancies of 0.852 (8) and 0.148 (8). H atoms of the water molecules were located in a difference Fourier map and refined with an O—H distance restraint of 0.85 (2) Å and with Uiso(H) = 1.5Ueq(O). H atoms on C atoms were generated geometrically and refined as riding atoms with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
Constituent units of the title compound. Displacement ellipsoids are drawn at the 30% probability level. Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) 3 - x, 1 - y, -z; (iii) 1 - x, -y, 2 - z.

Crystal data

[Ag(C10H14N4)(H2O)](C14H8O4)0.5·2H2OZ = 2
Mr = 472.27F(000) = 482
Triclinic, P1Dx = 1.628 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.7685 (6) ÅCell parameters from 3658 reflections
b = 10.0659 (6) Åθ = 2.0–25.7°
c = 10.9224 (7) ŵ = 1.08 mm1
α = 80.190 (1)°T = 293 K
β = 68.898 (1)°Block, colourless
γ = 74.775 (1)°0.23 × 0.16 × 0.14 mm
V = 963.36 (10) Å3

Data collection

Bruker APEX CCD area-detector diffractometer3569 independent reflections
Radiation source: fine-focus sealed tube3422 reflections with I > 2σ(I)
graphiteRint = 0.011
[var phi] and ω scansθmax = 25.7°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −11→11
Tmin = 0.81, Tmax = 0.86k = −12→11
5289 measured reflectionsl = −12→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.058H atoms treated by a mixture of independent and constrained refinement
S = 1.06w = 1/[σ2(Fo2) + (0.0296P)2 + 0.5838P] where P = (Fo2 + 2Fc2)/3
3569 reflections(Δ/σ)max = 0.003
267 parametersΔρmax = 0.36 e Å3
9 restraintsΔρmin = −0.41 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Ag10.956725 (17)0.248290 (16)0.414393 (15)0.03644 (7)
C11.1776 (2)0.4373 (2)0.3910 (2)0.0390 (5)
H11.17380.41400.47810.047*
C21.2573 (2)0.5253 (2)0.3053 (2)0.0390 (5)
H21.31740.57310.32190.047*
C31.1389 (2)0.4463 (2)0.2074 (2)0.0325 (4)
H31.10420.43150.14310.039*
C41.2955 (2)0.6107 (2)0.0650 (2)0.0372 (5)
H4A1.26050.70830.07850.045*0.855 (8)
H4B1.25930.5933−0.00140.045*0.855 (8)
H4C1.32030.68960.08320.045*0.145 (8)
H4D1.22210.64280.02090.045*0.145 (8)
C51.4677 (3)0.5751 (3)0.0147 (3)0.0374 (9)0.855 (8)
H5A1.50360.6338−0.06470.045*0.855 (8)
H5B1.50380.59420.08040.045*0.855 (8)
C5A1.4372 (14)0.5180 (14)−0.0276 (12)0.024 (4)*0.145 (8)
H5C1.41220.4341−0.03720.029*0.145 (8)
H5D1.46860.5669−0.11410.029*0.145 (8)
C60.5360 (2)0.0327 (2)0.93096 (18)0.0289 (4)
H6A0.45800.08040.89370.035*
H6B0.58760.10040.93700.035*
C70.6471 (2)−0.0754 (2)0.84084 (19)0.0305 (4)
H7A0.7307−0.11570.87310.037*
H7B0.5982−0.14860.84330.037*
C80.7895 (2)0.0778 (2)0.6596 (2)0.0318 (4)
H80.82110.11760.71270.038*
C90.7547 (2)0.0266 (2)0.4916 (2)0.0357 (5)
H90.75880.02480.40550.043*
C100.6817 (2)−0.0505 (2)0.5973 (2)0.0344 (4)
H100.6266−0.11320.59750.041*
C110.4496 (2)0.46334 (19)0.55623 (18)0.0242 (4)
C120.4568 (2)0.3221 (2)0.5596 (2)0.0327 (4)
H120.52560.27280.48970.039*
C130.3640 (2)0.2543 (2)0.6645 (2)0.0326 (4)
H130.37160.16030.66410.039*
C140.2594 (2)0.32470 (19)0.77048 (18)0.0261 (4)
C150.2498 (2)0.4651 (2)0.7673 (2)0.0321 (4)
H150.17970.51430.83670.038*
C160.3426 (2)0.5328 (2)0.6629 (2)0.0318 (4)
H160.33370.62700.66340.038*
C170.1584 (2)0.2522 (2)0.88668 (19)0.0288 (4)
N11.10255 (19)0.38726 (19)0.32976 (17)0.0341 (4)
N21.23205 (18)0.53009 (17)0.18881 (17)0.0315 (4)
N30.82188 (19)0.10780 (18)0.53071 (16)0.0323 (4)
N40.70506 (18)−0.01762 (17)0.70361 (15)0.0286 (3)
O10.17403 (16)0.12310 (14)0.88583 (15)0.0355 (3)
O20.06563 (18)0.32386 (16)0.97662 (15)0.0418 (4)
O2W0.08819 (17)0.93824 (16)0.11184 (15)0.0354 (3)
O3W0.64273 (19)0.13798 (18)0.20741 (18)0.0471 (4)
O1W0.91632 (17)0.19506 (16)0.20090 (14)0.0353 (3)
H2A0.128 (3)0.984 (3)0.040 (2)0.053*
H2B0.014 (2)0.908 (3)0.115 (3)0.053*
H3A0.715 (3)0.175 (2)0.202 (3)0.053*
H3B0.677 (3)0.0563 (19)0.180 (3)0.053*
H1B0.957 (3)0.243 (2)0.130 (2)0.053*
H1A0.958 (3)0.1105 (17)0.201 (3)0.053*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ag10.03500 (10)0.03866 (11)0.03170 (10)−0.01681 (7)−0.00289 (7)0.00291 (7)
C10.0356 (11)0.0507 (13)0.0313 (11)−0.0134 (10)−0.0098 (9)−0.0015 (9)
C20.0344 (11)0.0456 (12)0.0412 (12)−0.0159 (9)−0.0118 (9)−0.0049 (10)
C30.0277 (10)0.0364 (11)0.0306 (10)−0.0102 (8)−0.0044 (8)−0.0021 (8)
C40.0315 (11)0.0308 (11)0.0403 (12)−0.0079 (9)−0.0050 (9)0.0070 (9)
C50.0313 (14)0.0285 (15)0.0442 (15)−0.0113 (10)−0.0033 (11)0.0055 (11)
C60.0295 (10)0.0319 (10)0.0240 (10)−0.0112 (8)−0.0062 (8)0.0027 (8)
C70.0319 (10)0.0327 (10)0.0246 (9)−0.0115 (8)−0.0073 (8)0.0056 (8)
C80.0316 (10)0.0382 (11)0.0260 (9)−0.0151 (9)−0.0069 (8)0.0019 (8)
C90.0406 (12)0.0438 (12)0.0240 (10)−0.0168 (10)−0.0085 (8)0.0003 (8)
C100.0391 (11)0.0371 (11)0.0292 (10)−0.0153 (9)−0.0101 (9)−0.0008 (8)
C110.0232 (9)0.0249 (9)0.0243 (9)−0.0071 (7)−0.0078 (7)0.0009 (7)
C120.0358 (11)0.0256 (10)0.0285 (10)−0.0083 (8)0.0004 (8)−0.0030 (8)
C130.0384 (11)0.0230 (9)0.0322 (10)−0.0106 (8)−0.0050 (9)−0.0003 (8)
C140.0241 (9)0.0294 (10)0.0258 (9)−0.0093 (7)−0.0094 (7)0.0031 (7)
C150.0302 (10)0.0300 (10)0.0299 (10)−0.0076 (8)−0.0011 (8)−0.0046 (8)
C160.0331 (10)0.0228 (9)0.0336 (10)−0.0090 (8)−0.0016 (8)−0.0036 (8)
C170.0274 (9)0.0318 (10)0.0291 (10)−0.0123 (8)−0.0097 (8)0.0017 (8)
N10.0312 (9)0.0382 (10)0.0312 (9)−0.0133 (8)−0.0053 (7)−0.0005 (7)
N20.0249 (8)0.0299 (9)0.0352 (9)−0.0075 (7)−0.0049 (7)−0.0002 (7)
N30.0327 (9)0.0370 (9)0.0256 (8)−0.0137 (7)−0.0062 (7)0.0032 (7)
N40.0294 (8)0.0310 (8)0.0237 (8)−0.0104 (7)−0.0062 (6)0.0020 (6)
O10.0360 (8)0.0283 (7)0.0378 (8)−0.0146 (6)−0.0038 (6)0.0019 (6)
O20.0445 (9)0.0343 (8)0.0333 (8)−0.0135 (7)0.0052 (7)−0.0010 (6)
O2W0.0375 (8)0.0371 (8)0.0352 (8)−0.0129 (6)−0.0157 (7)0.0029 (6)
O3W0.0394 (9)0.0453 (10)0.0573 (10)−0.0110 (8)−0.0152 (8)−0.0052 (8)
O1W0.0397 (8)0.0319 (8)0.0295 (7)−0.0129 (6)−0.0030 (6)−0.0007 (6)

Geometric parameters (Å, °)

Ag1—N12.1209 (17)C7—H7B0.97
Ag1—N32.1237 (16)C8—N31.326 (3)
Ag1—O1W2.6611 (12)C8—N41.344 (3)
C1—C21.350 (3)C8—H80.93
C1—N11.378 (3)C9—C101.355 (3)
C1—H10.93C9—N31.372 (3)
C2—N21.371 (3)C9—H90.93
C2—H20.93C10—N41.368 (3)
C3—N11.328 (3)C10—H100.93
C3—N21.338 (3)C11—C161.399 (3)
C3—H30.93C11—C121.400 (3)
C4—N21.469 (3)C11—C11iii1.492 (4)
C4—C51.531 (3)C12—C131.382 (3)
C4—C5A1.564 (13)C12—H120.93
C4—H4A0.97C13—C141.391 (3)
C4—H4B0.97C13—H130.93
C4—H4C0.96C14—C151.387 (3)
C4—H4D0.96C14—C171.509 (3)
C5—C5i1.518 (5)C15—C161.379 (3)
C5—H5A0.97C15—H150.93
C5—H5B0.97C16—H160.93
C5A—C5Ai1.49 (3)C17—O21.251 (2)
C5A—H5C0.97C17—O11.269 (2)
C5A—H5D0.97O2W—H2A0.857 (16)
C6—C71.519 (3)O2W—H2B0.842 (16)
C6—C6ii1.531 (4)O3W—H3A0.865 (16)
C6—H6A0.97O3W—H3B0.864 (16)
C6—H6B0.97O1W—H1B0.863 (16)
C7—N41.473 (2)O1W—H1A0.842 (16)
C7—H7A0.97
N1—Ag1—N3169.34 (7)N4—C7—H7B109.1
C2—C1—N1109.61 (19)C6—C7—H7B109.1
C2—C1—H1125.2H7A—C7—H7B107.8
N1—C1—H1125.2N3—C8—N4111.21 (18)
C1—C2—N2106.38 (19)N3—C8—H8124.4
C1—C2—H2126.8N4—C8—H8124.4
N2—C2—H2126.8C10—C9—N3109.77 (18)
N1—C3—N2111.13 (19)C10—C9—H9125.1
N1—C3—H3124.4N3—C9—H9125.1
N2—C3—H3124.4C9—C10—N4106.30 (18)
N2—C4—C5112.46 (18)C9—C10—H10126.9
N2—C4—C5A110.1 (5)N4—C10—H10126.9
N2—C4—H4A109.1C16—C11—C12116.87 (17)
C5—C4—H4A109.1C16—C11—C11iii121.5 (2)
C5A—C4—H4A136.1C12—C11—C11iii121.6 (2)
N2—C4—H4B109.1C13—C12—C11121.43 (18)
C5—C4—H4B109.1C13—C12—H12119.3
C5A—C4—H4B76.9C11—C12—H12119.3
H4A—C4—H4B107.8C12—C13—C14120.93 (18)
N2—C4—H4C109.8C12—C13—H13119.5
C5—C4—H4C77.1C14—C13—H13119.5
C5A—C4—H4C110.9C15—C14—C13118.11 (17)
H4B—C4—H4C134.0C15—C14—C17120.18 (17)
N2—C4—H4D109.4C13—C14—C17121.72 (17)
C5—C4—H4D132.7C16—C15—C14121.05 (18)
C5A—C4—H4D108.3C16—C15—H15119.5
H4A—C4—H4D75.9C14—C15—H15119.5
H4C—C4—H4D108.3C15—C16—C11121.60 (18)
C5i—C5—C4112.6 (3)C15—C16—H16119.2
C5i—C5—H5A109.1C11—C16—H16119.2
C4—C5—H5A109.1O2—C17—O1124.92 (18)
C5i—C5—H5B109.1O2—C17—C14117.50 (17)
C4—C5—H5B109.1O1—C17—C14117.59 (17)
H5A—C5—H5B107.8C3—N1—C1105.41 (17)
C5Ai—C5A—C4110.4 (13)C3—N1—Ag1127.40 (15)
C5Ai—C5A—H5C109.6C1—N1—Ag1127.18 (15)
C4—C5A—H5C109.6C3—N2—C2107.47 (17)
C5Ai—C5A—H5D109.6C3—N2—C4125.54 (19)
C4—C5A—H5D109.6C2—N2—C4126.99 (18)
H5C—C5A—H5D108.1C8—N3—C9105.46 (17)
C7—C6—C6ii111.4 (2)C8—N3—Ag1125.56 (14)
C7—C6—H6A109.4C9—N3—Ag1128.95 (14)
C6ii—C6—H6A109.4C8—N4—C10107.26 (16)
C7—C6—H6B109.4C8—N4—C7126.55 (17)
C6ii—C6—H6B109.4C10—N4—C7126.19 (17)
H6A—C6—H6B108.0H2A—O2W—H2B116 (2)
N4—C7—C6112.45 (16)H3A—O3W—H3B111 (2)
N4—C7—H7A109.1H1B—O1W—H1A114 (2)
C6—C7—H7A109.1
N1—C1—C2—N2−0.1 (3)C2—C1—N1—Ag1−178.88 (15)
N2—C4—C5—C5i61.3 (4)N3—Ag1—N1—C3177.4 (3)
C5A—C4—C5—C5i−32.3 (8)N3—Ag1—N1—C1−3.9 (5)
N2—C4—C5A—C5Ai−68.5 (14)N1—C3—N2—C2−0.1 (2)
C5—C4—C5A—C5Ai32.3 (9)N1—C3—N2—C4179.42 (18)
C6ii—C6—C7—N4173.50 (19)C1—C2—N2—C30.1 (2)
N3—C9—C10—N4−0.6 (3)C1—C2—N2—C4−179.36 (19)
C16—C11—C12—C13−1.0 (3)C5—C4—N2—C3−121.4 (2)
C11iii—C11—C12—C13179.5 (2)C5A—C4—N2—C3−82.8 (6)
C11—C12—C13—C140.2 (3)C5—C4—N2—C258.1 (3)
C12—C13—C14—C150.7 (3)C5A—C4—N2—C296.6 (6)
C12—C13—C14—C17−179.23 (19)N4—C8—N3—C9−0.2 (2)
C13—C14—C15—C16−0.8 (3)N4—C8—N3—Ag1−178.33 (13)
C17—C14—C15—C16179.08 (19)C10—C9—N3—C80.5 (3)
C14—C15—C16—C110.1 (3)C10—C9—N3—Ag1178.52 (15)
C12—C11—C16—C150.8 (3)N1—Ag1—N3—C812.2 (5)
C11iii—C11—C16—C15−179.6 (2)N1—Ag1—N3—C9−165.4 (3)
C15—C14—C17—O21.4 (3)N3—C8—N4—C10−0.1 (2)
C13—C14—C17—O2−178.69 (19)N3—C8—N4—C7−179.62 (18)
C15—C14—C17—O1−178.55 (18)C9—C10—N4—C80.4 (2)
C13—C14—C17—O11.3 (3)C9—C10—N4—C7179.93 (19)
N2—C3—N1—C10.0 (2)C6—C7—N4—C864.4 (3)
N2—C3—N1—Ag1178.97 (13)C6—C7—N4—C10−115.0 (2)
C2—C1—N1—C30.1 (3)

Symmetry codes: (i) −x+3, −y+1, −z; (ii) −x+1, −y, −z+2; (iii) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2W—H2A···O1iv0.86 (2)1.99 (2)2.833 (2)166 (3)
O2W—H2B···O1v0.84 (2)1.95 (2)2.779 (2)169 (3)
O3W—H3B···O1vi0.86 (2)2.05 (2)2.877 (2)160 (2)
O3W—H3A···O1W0.86 (2)2.02 (2)2.852 (2)161 (2)
O1W—H1A···O2Wvii0.84 (2)2.03 (2)2.802 (2)153 (2)

Symmetry codes: (iv) x, y+1, z−1; (v) −x, −y+1, −z+1; (vi) −x+1, −y, −z+1; (vii) x+1, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2938).

References

  • Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334–2375. [PubMed]
  • Li, F. F., Ma, J. F., Song, S. Y., Yang, J., Liu, Y. Y. & Su, Z. M. (2005). Inorg. Chem. 44, 9374–9383. [PubMed]
  • Ma, L. F., Wang, Y. Y., Liu, J. Q., Yang, G. P., Du, M. & Wang, L. Y. (2009). Eur. J. Inorg. Chem. pp. 147–254.
  • Ma, J. F., Yang, J., Li, S. L. & Song, S. Y. (2005). Cryst. Growth Des. 5, 807–812.
  • Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography