PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): m1694.
Published online 2009 November 28. doi:  10.1107/S160053680904999X
PMCID: PMC2971934

Bis[N,N-bis­(2-hydroxy­ethyl)dithio­carbamato-κ2 S,S′]copper(II)

Abstract

In the title compound, [Cu(C5H10NO2S2)2], the CuII cation is chelated by two bis­(2-hydroxy­ethyl)dithio­carbamate anions with a distorted square-planar coordination geometry. Inter­molecular O—H(...)O hydrogen bonding is observed between the terminal hydr­oxy groups in the crystal structure.

Related literature

For the different oxidation state of Cu in copper–dithio­carbamate complexes, see: Cardell et al. (2006 [triangle]); Zhang et al. (2004 [triangle]); Jian et al. (1999 [triangle]); Hogarth et al. (2000 [triangle]). For the Cu—S bond distances in a related structure, see: Jian et al. (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1694-scheme1.jpg

Experimental

Crystal data

  • [Cu(C5H10NO2S2)2]
  • M r = 424.06
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1694-efi1.jpg
  • a = 11.1088 (9) Å
  • b = 14.7047 (11) Å
  • c = 11.3401 (9) Å
  • β = 118.253 (1)°
  • V = 1631.7 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.86 mm−1
  • T = 298 K
  • 0.35 × 0.35 × 0.30 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.562, T max = 0.605
  • 8158 measured reflections
  • 2928 independent reflections
  • 2652 reflections with I > 2σ(I)
  • R int = 0.068

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.095
  • S = 1.03
  • 2928 reflections
  • 190 parameters
  • H-atom parameters constrained
  • Δρmax = 1.74 e Å−3
  • Δρmin = −0.56 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1999 [triangle]); data reduction: SAINT program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680904999X/xu2681sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680904999X/xu2681Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Natural Science Foundation of Jiangxi Province, China (2007GZH1573).

supplementary crystallographic information

Comment

Metal dithiocarbamate complexes have been extensively studied. Monomeric, dimeric, polymeric, two-dimensional and three-dimensional structures are all featured amongst these complexes. In copper dithiocarbamate complexes, the copper oxidation states I–III have been accessible (Cardell et al., 2006; Zhang et al., 2004; Jian et al., 1999; Hogarth et al., 2000) because dithiocarbamates have capability to stabilize transition metals in a wide range of oxidation states. The title complex (I), was synthesized and characterized by X-ray crystal structure analysis.

The title complex has a monomeric structure (shown as Fig.1). The copper atom, which has distorted square-planar geometry, was coordinated to four sulfur atoms of two 2-hydroxyethyldithiocarbamate ligands. The Cu—S distances ranged from 2.2999 (8) to 2.3201 (8) Å. This is consistent with the literature precedents (Jian, 2003). The interesting feature of this structure is the presence of hydrogen bonding between molecules, owing to the presence of hydrogen-bonding functionality in the N-bound residues. The structure can be thought of as being comprised of layers held together primarily by O—H–O interactions in the bc plane; see Table 2 for geometric parameters describing the hydrogen-bonding interactions. Successive layers stack parallel to the a direction, held together by O—H–O interactions.

Experimental

NaOH(0.04 g, 1.0 mmol), NH(CH2CH2OH)2 (0.105 g, 1.0 mmol) and CS2 (0.092 g, 1.2 mmol) was stirred for 1 h in methanol (25 ml) at room temperature, to this solution, CuCl2 (0.067 g, 0.5 mmol) was added. The mixture was stirred for 2 h at room temperature and the precipitate was filtered off. Black crystals were obtained from the slow evaporation of the filtrate.

Refinement

H atoms were placed in calculated positions with C—H = 0.97 and O—H = 0.82 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O). The highest peak in the final difference Fourier map is 1.1 Å apart from the C1 atom.

Figures

Fig. 1.
The molecular structure of the title compound with 50% probability displacement ellipsoids for non-H atoms.

Crystal data

[Cu(C5H10NO2S2)2]F(000) = 876
Mr = 424.06Dx = 1.726 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5620 reflections
a = 11.1088 (9) Åθ = 2.5–28.1°
b = 14.7047 (11) ŵ = 1.86 mm1
c = 11.3401 (9) ÅT = 298 K
β = 118.253 (1)°Prism, black
V = 1631.7 (2) Å30.35 × 0.35 × 0.30 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer2928 independent reflections
Radiation source: fine-focus sealed tube2652 reflections with I > 2σ(I)
graphiteRint = 0.068
[var phi] and ω scansθmax = 25.3°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −13→9
Tmin = 0.562, Tmax = 0.605k = −16→17
8158 measured reflectionsl = −7→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.0446P)2 + 1.7228P] where P = (Fo2 + 2Fc2)/3
2928 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 1.74 e Å3
0 restraintsΔρmin = −0.56 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.0521 (3)−0.05853 (18)0.2261 (3)0.0192 (6)
C2−0.1504 (3)−0.0869 (2)0.2496 (3)0.0233 (6)
H2A−0.1983−0.14110.25310.028*
H2B−0.2019−0.06010.16140.028*
C3−0.1424 (4)−0.0196 (3)0.3548 (4)0.0406 (8)
H3A−0.1207−0.05200.43710.049*
H3B−0.06970.02360.37350.049*
C40.0381 (3)−0.20342 (18)0.3257 (3)0.0212 (6)
H4A0.1013−0.22290.29420.025*
H4B−0.0383−0.24540.29010.025*
C50.1091 (3)−0.2093 (2)0.4765 (3)0.0227 (6)
H5A0.0560−0.17630.51000.027*
H5B0.1130−0.27250.50280.027*
C60.3436 (3)0.17401 (18)0.0766 (2)0.0162 (5)
C70.5611 (3)0.20374 (19)0.0815 (3)0.0190 (6)
H7A0.59850.17020.16500.023*
H7B0.61230.26000.09800.023*
C80.5805 (3)0.1480 (2)−0.0214 (3)0.0255 (6)
H8A0.67400.12640.01850.031*
H8B0.52090.0953−0.04620.031*
C90.3588 (3)0.30637 (19)−0.0457 (3)0.0206 (6)
H9A0.26180.3096−0.07360.025*
H9B0.36930.3001−0.12550.025*
C100.4260 (3)0.3936 (2)0.0247 (3)0.0307 (7)
H10A0.52150.39270.04620.037*
H10B0.38270.4445−0.03470.037*
Cu10.18494 (3)0.05408 (2)0.13092 (3)0.02051 (13)
N1−0.0131 (2)−0.11176 (16)0.2714 (2)0.0194 (5)
N20.4167 (2)0.22570 (16)0.0394 (2)0.0166 (5)
O1−0.2655 (3)0.02700 (18)0.3122 (3)0.0447 (6)
H1−0.3242−0.00820.30920.067*
O20.2441 (2)−0.17337 (15)0.5363 (2)0.0270 (5)
H20.2414−0.11970.51560.040*
O30.5511 (2)0.19925 (15)−0.13961 (19)0.0290 (5)
H30.60270.2431−0.11950.044*
O40.4164 (3)0.40549 (16)0.1437 (2)0.0457 (7)
H40.45340.36260.19440.069*
S10.20586 (7)−0.08469 (5)0.23294 (7)0.02249 (18)
S2−0.01496 (8)0.04398 (5)0.14746 (8)0.02730 (19)
S30.17688 (7)0.19631 (5)0.03995 (7)0.01979 (17)
S40.40396 (7)0.07346 (5)0.16331 (7)0.02160 (18)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0173 (13)0.0192 (14)0.0184 (13)−0.0016 (11)0.0064 (11)−0.0002 (10)
C20.0194 (14)0.0258 (15)0.0272 (15)−0.0037 (12)0.0130 (12)−0.0013 (12)
C30.0315 (18)0.051 (2)0.047 (2)−0.0082 (17)0.0249 (16)−0.0178 (18)
C40.0210 (14)0.0159 (13)0.0253 (14)−0.0022 (11)0.0097 (12)0.0012 (11)
C50.0208 (14)0.0214 (14)0.0258 (15)0.0013 (12)0.0110 (12)0.0039 (11)
C60.0163 (12)0.0175 (13)0.0151 (12)0.0001 (11)0.0076 (10)−0.0040 (10)
C70.0144 (13)0.0229 (14)0.0202 (13)−0.0002 (11)0.0086 (11)0.0004 (11)
C80.0250 (15)0.0253 (15)0.0311 (15)0.0012 (13)0.0173 (13)−0.0021 (12)
C90.0172 (13)0.0227 (14)0.0203 (13)0.0003 (11)0.0077 (11)0.0057 (11)
C100.0266 (16)0.0206 (15)0.0334 (17)−0.0023 (13)0.0047 (13)0.0066 (13)
Cu10.0192 (2)0.0191 (2)0.0275 (2)0.00087 (14)0.01459 (16)0.00434 (13)
N10.0161 (11)0.0186 (11)0.0226 (12)−0.0017 (10)0.0084 (9)0.0018 (9)
N20.0146 (11)0.0173 (11)0.0182 (11)−0.0005 (9)0.0079 (9)0.0009 (9)
O10.0341 (13)0.0424 (14)0.0581 (16)0.0015 (12)0.0223 (12)−0.0075 (12)
O20.0191 (10)0.0286 (11)0.0287 (11)0.0026 (9)0.0076 (8)0.0000 (9)
O30.0321 (12)0.0350 (12)0.0256 (10)−0.0108 (10)0.0183 (9)−0.0059 (9)
O40.0601 (17)0.0282 (12)0.0299 (12)0.0181 (12)0.0058 (11)−0.0052 (10)
S10.0161 (3)0.0221 (4)0.0296 (4)0.0025 (3)0.0111 (3)0.0073 (3)
S20.0251 (4)0.0220 (4)0.0423 (4)0.0070 (3)0.0221 (3)0.0120 (3)
S30.0157 (3)0.0196 (3)0.0263 (4)0.0013 (3)0.0118 (3)0.0025 (3)
S40.0195 (3)0.0189 (3)0.0294 (4)0.0034 (3)0.0140 (3)0.0062 (3)

Geometric parameters (Å, °)

C1—N11.324 (4)C7—C81.522 (4)
C1—S11.717 (3)C7—H7A0.9700
C1—S21.730 (3)C7—H7B0.9700
C2—N11.472 (4)C8—O31.434 (4)
C2—C31.519 (4)C8—H8A0.9700
C2—H2A0.9700C8—H8B0.9700
C2—H2B0.9700C9—N21.471 (3)
C3—O11.396 (4)C9—C101.508 (4)
C3—H3A0.9700C9—H9A0.9700
C3—H3B0.9700C9—H9B0.9700
C4—N11.479 (3)C10—O41.414 (4)
C4—C51.510 (4)C10—H10A0.9700
C4—H4A0.9700C10—H10B0.9700
C4—H4B0.9700Cu1—S12.3026 (8)
C5—O21.423 (3)Cu1—S22.3201 (8)
C5—H5A0.9700Cu1—S32.3148 (8)
C5—H5B0.9700Cu1—S42.2999 (8)
C6—N21.319 (4)O1—H10.8200
C6—S41.726 (3)O2—H20.8200
C6—S31.727 (3)O3—H30.8200
C7—N21.477 (3)O4—H40.8200
N1—C1—S1124.4 (2)O3—C8—H8A109.1
N1—C1—S2122.3 (2)C7—C8—H8A109.1
S1—C1—S2113.23 (16)O3—C8—H8B109.1
N1—C2—C3111.0 (2)C7—C8—H8B109.1
N1—C2—H2A109.4H8A—C8—H8B107.8
C3—C2—H2A109.4N2—C9—C10112.7 (2)
N1—C2—H2B109.4N2—C9—H9A109.1
C3—C2—H2B109.4C10—C9—H9A109.1
H2A—C2—H2B108.0N2—C9—H9B109.1
O1—C3—C2111.3 (3)C10—C9—H9B109.1
O1—C3—H3A109.4H9A—C9—H9B107.8
C2—C3—H3A109.4O4—C10—C9111.6 (3)
O1—C3—H3B109.4O4—C10—H10A109.3
C2—C3—H3B109.4C9—C10—H10A109.3
H3A—C3—H3B108.0O4—C10—H10B109.3
N1—C4—C5114.6 (2)C9—C10—H10B109.3
N1—C4—H4A108.6H10A—C10—H10B108.0
C5—C4—H4A108.6S4—Cu1—S1100.48 (3)
N1—C4—H4B108.6S4—Cu1—S376.94 (3)
C5—C4—H4B108.6S1—Cu1—S3176.35 (3)
H4A—C4—H4B107.6S4—Cu1—S2167.33 (3)
O2—C5—C4112.7 (2)S1—Cu1—S277.02 (3)
O2—C5—H5A109.1S3—Cu1—S2104.91 (3)
C4—C5—H5A109.1C1—N1—C2120.1 (2)
O2—C5—H5B109.1C1—N1—C4121.8 (2)
C4—C5—H5B109.1C2—N1—C4117.4 (2)
H5A—C5—H5B107.8C6—N2—C9122.0 (2)
N2—C6—S4123.0 (2)C6—N2—C7120.7 (2)
N2—C6—S3124.5 (2)C9—N2—C7117.3 (2)
S4—C6—S3112.51 (15)C3—O1—H1109.5
N2—C7—C8113.3 (2)C5—O2—H2109.5
N2—C7—H7A108.9C8—O3—H3109.5
C8—C7—H7A108.9C10—O4—H4109.5
N2—C7—H7B108.9C1—S1—Cu185.25 (10)
C8—C7—H7B108.9C1—S2—Cu184.42 (10)
H7A—C7—H7B107.7C6—S3—Cu184.86 (9)
O3—C8—C7112.5 (2)C6—S4—Cu185.35 (9)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···O4i0.821.862.654 (4)162
O2—H2···O1ii0.822.292.694 (3)111
O3—H3···O2iii0.821.942.744 (3)166
O4—H4···O3iv0.821.902.677 (3)157

Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) −x, −y, −z+1; (iii) −x+1, y+1/2, −z+1/2; (iv) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2681).

References

  • Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsis, USA.
  • Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsis, USA.
  • Cardell, D., Hogarth, D. & Faulkner, S. (2006). Inorg. Chim. Acta, 359, 1321–1324.
  • Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  • Hogarth, G., Pateman, A. & Redmond, S. P. (2000). Inorg. Chim. Acta, 306, 232–236.
  • Jian, F.-F., Wang, Z.-X., Bai, Z.-P., You, X.-Z., Fun, H. K., Chinnakali, K. & Razak, I. A. (1999). Polyhedron, 18, 3401–3406.
  • Jian, F.-F., Xue, T., Jiao, K. & Zhang, S.-S. (2003). Chin. J. Chem. 21, 50–55.
  • Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zhang, W., Zhu, X.-L., Cheng, Z.-P., Zhu, J., Lang, J.-P. & Lu, J.-M. (2004). Chin. J. Chem. 22, 888–890.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography