PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): m1589.
Published online 2009 November 14. doi:  10.1107/S1600536809047679
PMCID: PMC2971933

catena-Poly[[(2,2′:6′,2′′-terpyridine-κ3 N,N′,N′′)zinc(II)]-μ-2,2′-oxydibenzo­ato-κ2 O:O′]

Abstract

In the title compound, [Zn(C14H8O5)(C15H11N3)]n, both the ZnII ion and the oxydibenzoate ligand are located on a twofold rotation axis. The ZnII centre is coordinated by three N atoms from a chelating 2,2′:6′,2′′-terpyridine ligand and two O atoms from two 2,2′-oxydibenzoate ligands, forming a distorted trigonal-bipyramidal coordination environment. Further coordination via the 2,2′-oxydibenzoate anions forms a one-dimensional coordination polymer extending parallel to [010]. Aromatic π–π stacking inter­actions are observed between adjacent terpyridine ligands with a centroid–centroid distance of 3.568 (2) Å.

Related literature

For related structures, see: Zhao & Li (2009 [triangle]); Andres & Schubert (2004 [triangle]); Constable (1986 [triangle]); Hofmeier & Schubert (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1589-scheme1.jpg

Experimental

Crystal data

  • [Zn(C14H8O5)(C15H11N3)]
  • M r = 554.84
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1589-efi5.jpg
  • a = 8.7985 (17) Å
  • b = 10.694 (2) Å
  • c = 25.535 (5) Å
  • V = 2402.6 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.07 mm−1
  • T = 296 K
  • 0.20 × 0.18 × 0.16 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2007 [triangle]) T min = 0.815, T max = 0.847
  • 15388 measured reflections
  • 2924 independent reflections
  • 2347 reflections with I > 2σ(I)
  • R int = 0.043

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.098
  • S = 1.08
  • 2924 reflections
  • 174 parameters
  • H-atom parameters constrained
  • Δρmax = 0.39 e Å−3
  • Δρmin = −0.31 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 1999 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809047679/nk2011sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809047679/nk2011Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

2,2':6',2''-Terpyridine and its derivatives have been intensively explored because of the interesting electronic, photonic, magnetic, reactive and structural properties shown by the transition metal complexes of these ligands (Andres & Schubert, 2004; Constable, 1986; Hofmeier & Schubert, 2004). We report here the synthesis and structure of the ZnII complex based on the 2,2':6',2''-terpyridine ligand.

In the crystal structure of the title compound, the Zn atoms are coordinated by three N atoms from a chelating terpy ligand and two O atoms from two 2,2'-oxydibenzoate ligands, forming a distorted trigonal bipyramidal coordination environment (Figure 1). The Zinc atoms are linked by the 2,2-oxydibenzoate anions into a one-dimensional coordination polymer.

Aromatic stacking interactions between Cg1 and Cg2 [Cg1 and Cg2 are (N2, C8 – C12) and (N2i, C8i – C12i) ring centroids, respectively, symmetry code:(i) -1/2 - x,1/2 - y,z] are observed, with a centroid–centroid distances of 3.568 (2) Å.

Experimental

The title complound was synthesized hydrothermally in a Teflon-lined autoclave (25 ml) by heating a mixture of 2,2':6',2''-terpyridine (0.2 mmol), 2,2'-oxydibenzoic acid (0.4 mmol) and ZnSO4.H2O (0.2 mmol) in water (10 ml) at 393 K for 3 d. The autoclave was slowly cooled to room temperature. Crystals suitable for X-ray analysis were obtained.

Refinement

All the H atoms could be detected in the difference Fourier map. Nevertheless, they were situated into the idealized position and refined using a C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius. [Symmetry codes: (i) -x+1/2, -y+1/2, z; (ii) -x+1/2, ...

Crystal data

[Zn(C14H8O5)(C15H11N3)]F(000) = 1136
Mr = 554.84Dx = 1.534 Mg m3
Orthorhombic, PccnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2acCell parameters from 2235 reflections
a = 8.7985 (17) Åθ = 2.1–25.4°
b = 10.694 (2) ŵ = 1.07 mm1
c = 25.535 (5) ÅT = 296 K
V = 2402.6 (8) Å3Block, colourless
Z = 40.20 × 0.18 × 0.16 mm

Data collection

Bruker SMART APEXII CCD area-detector diffractometer2924 independent reflections
Radiation source: sealed tube2347 reflections with I > 2σ(I)
graphiteRint = 0.043
ω scansθmax = 28.1°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Bruker, 2007)h = −11→11
Tmin = 0.815, Tmax = 0.847k = −10→14
15388 measured reflectionsl = −27→33

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.08w = 1/[σ2(Fo2) + (0.0319P)2 + 2.226P] where P = (Fo2 + 2Fc2)/3
2924 reflections(Δ/σ)max < 0.001
174 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = −0.31 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.1521 (3)0.0127 (2)0.37317 (9)0.0328 (5)
C20.0873 (3)−0.0769 (2)0.33333 (8)0.0279 (5)
C3−0.0284 (3)−0.0330 (2)0.30090 (10)0.0371 (6)
H3−0.06020.04950.30440.045*
C4−0.0974 (3)−0.1075 (3)0.26391 (11)0.0461 (7)
H4−0.1743−0.07560.24280.055*
C5−0.0514 (3)−0.2295 (3)0.25857 (11)0.0484 (7)
H5−0.0971−0.28070.23370.058*
C60.0626 (3)−0.2760 (2)0.29012 (11)0.0428 (6)
H60.0930−0.35890.28660.051*
C70.1323 (3)−0.2002 (2)0.32707 (9)0.0311 (5)
C8−0.0782 (4)0.3622 (3)0.39283 (15)0.0611 (9)
H8−0.05980.35780.35700.073*
C9−0.2154 (4)0.4118 (4)0.4104 (2)0.0781 (12)
H9−0.28720.44120.38660.094*
C10−0.2425 (4)0.4166 (3)0.4628 (2)0.0807 (13)
H10−0.33370.44890.47520.097*
C11−0.1361 (4)0.3741 (3)0.49663 (16)0.0647 (10)
H11−0.15400.37660.53250.078*
C12−0.0007 (3)0.3269 (2)0.47753 (11)0.0450 (7)
C130.1247 (3)0.2844 (2)0.51128 (10)0.0437 (7)
C140.1214 (5)0.2817 (3)0.56602 (12)0.0699 (11)
H140.03270.30130.58400.084*
C150.25000.25000.59255 (18)0.084 (2)
H150.25000.25000.62900.101*
N10.25000.25000.48583 (10)0.0370 (7)
N20.0271 (3)0.3210 (2)0.42577 (9)0.0423 (5)
O30.1871 (2)0.11853 (16)0.35496 (7)0.0425 (4)
O40.1571 (3)−0.0158 (2)0.41919 (8)0.0732 (8)
O50.2500−0.25000.35744 (9)0.0370 (5)
Zn10.25000.25000.404461 (14)0.03014 (12)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0402 (13)0.0278 (13)0.0305 (12)0.0013 (10)−0.0055 (10)−0.0016 (10)
C20.0331 (12)0.0246 (11)0.0259 (11)−0.0057 (10)0.0003 (9)0.0003 (8)
C30.0432 (14)0.0287 (13)0.0395 (13)−0.0004 (11)−0.0055 (11)0.0021 (10)
C40.0428 (15)0.0493 (17)0.0460 (16)−0.0070 (13)−0.0156 (13)0.0017 (13)
C50.0465 (15)0.0482 (18)0.0505 (16)−0.0109 (13)−0.0102 (13)−0.0148 (13)
C60.0459 (15)0.0295 (15)0.0528 (16)−0.0025 (11)−0.0031 (13)−0.0125 (11)
C70.0347 (13)0.0285 (12)0.0301 (11)−0.0033 (10)0.0026 (10)−0.0012 (9)
C80.0508 (18)0.057 (2)0.076 (2)0.0010 (16)−0.0083 (17)−0.0014 (17)
C90.051 (2)0.052 (2)0.132 (4)0.0036 (16)−0.014 (2)−0.005 (2)
C100.0508 (19)0.047 (2)0.145 (4)−0.0045 (18)0.026 (3)−0.028 (2)
C110.059 (2)0.0445 (19)0.090 (3)−0.0147 (16)0.029 (2)−0.0232 (17)
C120.0480 (16)0.0293 (14)0.0577 (17)−0.0145 (12)0.0178 (14)−0.0113 (12)
C130.0644 (18)0.0292 (14)0.0377 (14)−0.0192 (12)0.0137 (13)−0.0066 (10)
C140.120 (3)0.051 (2)0.0386 (17)−0.018 (2)0.0285 (19)−0.0064 (13)
C150.160 (6)0.065 (3)0.028 (2)−0.020 (4)0.0000.000
N10.0537 (18)0.0297 (15)0.0277 (13)−0.0183 (15)0.0000.000
N20.0406 (12)0.0377 (13)0.0487 (13)−0.0046 (10)0.0024 (10)−0.0027 (10)
O30.0645 (12)0.0274 (9)0.0355 (9)−0.0114 (9)−0.0081 (9)−0.0014 (7)
O40.134 (2)0.0536 (14)0.0323 (11)−0.0204 (15)−0.0225 (12)0.0056 (9)
O50.0421 (13)0.0365 (13)0.0324 (12)0.0100 (12)0.0000.000
Zn10.0392 (2)0.02603 (19)0.02521 (19)−0.00652 (18)0.0000.000

Geometric parameters (Å, °)

C1—O41.215 (3)C10—C111.353 (6)
C1—O31.261 (3)C10—H100.9300
C1—C21.509 (3)C11—C121.383 (4)
C2—C71.387 (3)C11—H110.9300
C2—C31.394 (3)C12—N21.346 (3)
C3—C41.377 (4)C12—C131.472 (4)
C3—H30.9300C13—N11.332 (3)
C4—C51.372 (4)C13—C141.398 (4)
C4—H40.9300C14—C151.362 (5)
C5—C61.379 (4)C14—H140.9300
C5—H50.9300C15—C14i1.362 (5)
C6—C71.387 (3)C15—H150.9300
C6—H60.9300N1—C13i1.332 (3)
C7—O51.399 (3)N1—Zn12.078 (3)
C8—N21.326 (4)N2—Zn12.172 (2)
C8—C91.393 (5)O3—Zn11.9699 (17)
C8—H80.9300O5—C7ii1.399 (3)
C9—C101.360 (6)Zn1—O3i1.9699 (17)
C9—H90.9300Zn1—N2i2.172 (2)
O4—C1—O3124.9 (2)C12—C11—H11120.2
O4—C1—C2120.4 (2)N2—C12—C11121.3 (3)
O3—C1—C2114.4 (2)N2—C12—C13115.1 (2)
C7—C2—C3117.4 (2)C11—C12—C13123.5 (3)
C7—C2—C1125.0 (2)N1—C13—C14119.9 (3)
C3—C2—C1117.6 (2)N1—C13—C12114.8 (2)
C4—C3—C2122.3 (2)C14—C13—C12125.2 (3)
C4—C3—H3118.8C15—C14—C13119.0 (4)
C2—C3—H3118.8C15—C14—H14120.5
C5—C4—C3119.2 (3)C13—C14—H14120.5
C5—C4—H4120.4C14—C15—C14i120.3 (4)
C3—C4—H4120.4C14—C15—H15119.8
C4—C5—C6119.9 (2)C14i—C15—H15119.8
C4—C5—H5120.0C13—N1—C13i121.6 (3)
C6—C5—H5120.0C13—N1—Zn1119.20 (16)
C5—C6—C7120.5 (2)C13i—N1—Zn1119.20 (16)
C5—C6—H6119.7C8—N2—C12118.7 (3)
C7—C6—H6119.7C8—N2—Zn1126.0 (2)
C6—C7—C2120.5 (2)C12—N2—Zn1115.24 (19)
C6—C7—O5118.8 (2)C1—O3—Zn1118.19 (15)
C2—C7—O5120.6 (2)C7ii—O5—C7112.7 (2)
N2—C8—C9121.9 (4)O3—Zn1—O3i100.17 (10)
N2—C8—H8119.1O3—Zn1—N1129.91 (5)
C9—C8—H8119.1O3i—Zn1—N1129.92 (5)
C10—C9—C8118.9 (4)O3—Zn1—N2i99.49 (9)
C10—C9—H9120.6O3i—Zn1—N2i99.01 (9)
C8—C9—H9120.6N1—Zn1—N2i75.49 (6)
C11—C10—C9119.6 (4)O3—Zn1—N299.01 (9)
C11—C10—H10120.2O3i—Zn1—N299.49 (9)
C9—C10—H10120.2N1—Zn1—N275.49 (6)
C10—C11—C12119.6 (4)N2i—Zn1—N2150.99 (12)
C10—C11—H11120.2
O4—C1—C2—C7−52.7 (4)C9—C8—N2—C120.4 (5)
O3—C1—C2—C7132.5 (3)C9—C8—N2—Zn1−176.8 (3)
O4—C1—C2—C3126.2 (3)C11—C12—N2—C80.4 (4)
O3—C1—C2—C3−48.6 (3)C13—C12—N2—C8−177.4 (2)
C7—C2—C3—C40.2 (4)C11—C12—N2—Zn1177.9 (2)
C1—C2—C3—C4−178.8 (2)C13—C12—N2—Zn10.1 (3)
C2—C3—C4—C50.1 (4)O4—C1—O3—Zn1−1.7 (4)
C3—C4—C5—C60.1 (4)C2—C1—O3—Zn1172.90 (16)
C4—C5—C6—C7−0.5 (4)C6—C7—O5—C7ii55.47 (19)
C5—C6—C7—C20.7 (4)C2—C7—O5—C7ii−123.7 (2)
C5—C6—C7—O5−178.5 (2)C1—O3—Zn1—O3i173.4 (2)
C3—C2—C7—C6−0.6 (3)C1—O3—Zn1—N1−6.6 (2)
C1—C2—C7—C6178.3 (2)C1—O3—Zn1—N2i72.4 (2)
C3—C2—C7—O5178.6 (2)C1—O3—Zn1—N2−85.2 (2)
C1—C2—C7—O5−2.5 (4)C13—N1—Zn1—O3−86.96 (14)
N2—C8—C9—C10−0.8 (6)C13i—N1—Zn1—O393.04 (14)
C8—C9—C10—C110.4 (6)C13—N1—Zn1—O3i93.04 (14)
C9—C10—C11—C120.3 (5)C13i—N1—Zn1—O3i−86.96 (14)
C10—C11—C12—N2−0.8 (4)C13—N1—Zn1—N2i−177.27 (13)
C10—C11—C12—C13176.9 (3)C13i—N1—Zn1—N2i2.73 (13)
N2—C12—C13—N12.2 (3)C13—N1—Zn1—N22.72 (13)
C11—C12—C13—N1−175.6 (2)C13i—N1—Zn1—N2−177.27 (13)
N2—C12—C13—C14−179.8 (3)C8—N2—Zn1—O3−55.0 (3)
C11—C12—C13—C142.5 (4)C12—N2—Zn1—O3127.67 (18)
N1—C13—C14—C153.4 (4)C8—N2—Zn1—O3i47.0 (3)
C12—C13—C14—C15−174.5 (2)C12—N2—Zn1—O3i−130.35 (18)
C13—C14—C15—C14i−1.67 (19)C8—N2—Zn1—N1175.9 (3)
C14—C13—N1—C13i−1.7 (2)C12—N2—Zn1—N1−1.39 (17)
C12—C13—N1—C13i176.5 (2)C8—N2—Zn1—N2i175.9 (3)
C14—C13—N1—Zn1178.3 (2)C12—N2—Zn1—N2i−1.39 (17)
C12—C13—N1—Zn1−3.5 (2)

Symmetry codes: (i) −x+1/2, −y+1/2, z; (ii) −x+1/2, −y−1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NK2011).

References

  • Andres, P. R. & Schubert, U. S. (2004). Adv. Mater. 16, 1043–1068.
  • Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  • Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Constable, E. C. (1986). Adv. Inorg. Chem. Radiochem. 30, 69–121.
  • Hofmeier, H. & Schubert, U. S. (2004). Chem. Soc. Rev. 33, 373–399. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zhao, Q.-L. & Li, G.-P. (2009). Acta Cryst. E65, m693. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography