PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): m1695.
Published online 2009 November 28. doi:  10.1107/S1600536809050168
PMCID: PMC2971931

Tetra­ethyl­ammonium trichlorido(η6-p-cymene)ruthenate(II)

Abstract

In the title salt, [(C2H5)4N][RuCl3(C10H14)], the RuII atom shows an octa­hedral coordination in which the aromatic ring of the p-cymene mol­ecule occupies three coordination positions.

Related literature

For bond distances in the [Et4N]+ cation, see: Allen et al. (1987 [triangle]). For related structures, see: Arslan et al. (2009a [triangle],b) [triangle]; Solari et al. (2007 [triangle]); Vock & Dyson (2007 [triangle]); Lalrempuia et al. (2005 [triangle]); Liu et al. (2004 [triangle]). For the applications of dinuclear [Ru(η6-arene)Cl2]2 complexes as precursors in inorganic synthesis, see: Le Bozec et al. (1989 [triangle]); Quebatte et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1695-scheme1.jpg

Experimental

Crystal data

  • (C8H20N)[RuCl3(C10H14)]
  • M r = 471.88
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1695-efi1.jpg
  • a = 9.5840 (1) Å
  • b = 22.3797 (2) Å
  • c = 10.2071 (1) Å
  • β = 98.668 (1)°
  • V = 2164.28 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.09 mm−1
  • T = 296 K
  • 0.43 × 0.25 × 0.20 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.650, T max = 0.811
  • 21600 measured reflections
  • 4985 independent reflections
  • 4341 reflections with I > 2σ(I)
  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.023
  • wR(F 2) = 0.056
  • S = 1.02
  • 4985 reflections
  • 215 parameters
  • H-atom parameters constrained
  • Δρmax = 0.38 e Å−3
  • Δρmin = −0.29 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT-Plus (Bruker, 1998 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809050168/ng2680sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809050168/ng2680Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This project was supported by the Program for New Century Excellent Talents in Universities of China (NCET-06–0556 and NCET-08–0618).

supplementary crystallographic information

Comment

The general type dinuclear complexes [Ru(η6-arene)Cl2]2 are well established as useful synthetic precursors in preparative inorganic chemistry (Le Bozec et al. 1989). For example, the commercial [(p-cymene)RuCl2]2 was found to display an exceptionally high activity for atom transfer radical addition reactions under mild conditions (Quebatte et al. 2005). Relative to wide investigation of the dinuclear neutral [Ru(η6-arene)Cl2]2 complexes, mononuclear anions of type [Ru(η6-arene)Cl3] have rarely been described, although the labile chloride ligands in the [Ru(η6-arene)Cl3]- species can be substituted to result in formation of a series of new complexes with [Ru(η6-arene)] fragments (Lalrempuia et al. 2005). It has recently been noted that [Ph4P][(p-cymene)RuCl3] was obtained from the reaction of [(p-cymene)RuCl2]2 with two equivalents of [Ph4P]Cl in dichloromethane (Vock & Dyson, 2007). With this idea in mind, in order to isolate trichlororuthenate(II) anion as an effective starting material, we are interested to carry out the similar reaction of [(p-cymene)RuCl2]2 with [Et4N]Cl.H2O, the mononuclear compound [Et4N][(p-cymene)RuCl3] is thus prepared and structurally characterized. In this paper, the initial results of this work are reported.

Complex (I) crystallizes in the monoclinic crystal system, containing two independent ions: [Et4N]+ cation and [RuCl3(C10H14)]- anion. The molecular structure of the title compound is depicted in Fig. 1. The coordination geometry of ruthenium is pseudo-octahedral, with an average Ru—Cl bond length is 2.4278 (5) Å and the average Cl—Ru—Cl bond angle is 87.64 (2)°, which are compared with those reported in other related trichlororuthenate(II) complexes such as [Ph4P][(p-cymene)RuCl3] (av. Ru—Cl = 2.4450 (11) (5) Å, av. Cl—Ru—Cl = 87.35 (5)°) (Vock & Dyson, 2007), [C14H17N2S2][(p-cymene)RuCl3] (C14H17N2S2 = 1,3-bis(thiophen-2-ylmethyl)3,4,5,6- tetrahydropyrimidinium) (av. Ru—Cl = 2.4268 (11) Å, av. Cl—Ru—Cl = 87.10 (3)°) (Arslan et al. 2009a) and [C13H15N2S2][(p-cymene)RuCl3] (C13H15N2S2 = 1,3-(2-thienylmethyl)-4,5-dihydroimidazolium) (av. Ru—Cl = 2.4301 (11) Å, av. Cl—Ru—Cl = 87.61 (4)°) (Arslan et al. 2009b). The ruthenium atom exhibits a distorted octahedral coordination with the benzene ring of the p-cymene group formally occupying three of coordination positions and three terminal chloride atoms completing the coordination sphere. The Ru—C(ring) distances span the range 2.1380 (17)—2.1994 (18) Å in the title compound and compare well with those found in other p-cymene-trichlororuthenate(II) compounds (Vock & Dyson, 2007; Arslan et al. 2009a, 2009b). The distance between the centroid of the p-cymene ring and ruthenium is 1.648 (2) Å, which is longer than that reported in other ruthenium compounds with three-chloride ligands (Liu et al., 2004; Solari et al., 2007). The [Et4N]+ cation in the title compound has its expected structure as well as normal distances and angles, which will not be discussed further (Allen et al., 1987).

Experimental

Treatment of [(p-cymene)RuCl2]2 with two equivalents of [Et4N]Cl.H2O in a mixed THF/CH2Cl2 (1:1) solvent afforded the orange solution. The mixture was stirred for 2 h at room temperature, and then Et2O (50 ml) was added slowly and the precipitate that formed was filtered off with suction, washed with Et2O (3 x 10 ml) and dried in vacuo, yielding an orange solid in 92%. Recrystallization from CH2Cl2/Et2O (1:5) gave orange block crystals. Anal. Calcd. for C18H34NCl3Ru: C, 45.81; H, 7.26; N, 2.97%. Found: C, 45.76; H, 7.23; N, 2.92%.

Refinement

H atoms were positioned geometrically and refined using a riding model (including free rotation about the ethanol C—C bond), with C—H = 0.95–0.99 Å and with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C).

Figures

Fig. 1.
The structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids at the 50% probability level.

Crystal data

(C8H20N)[RuCl3(C10H14)]F(000) = 976
Mr = 471.88Dx = 1.448 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9980 reflections
a = 9.5840 (1) Åθ = 2.2–27.4°
b = 22.3797 (2) ŵ = 1.09 mm1
c = 10.2071 (1) ÅT = 296 K
β = 98.668 (1)°Block, orange
V = 2164.28 (4) Å30.43 × 0.25 × 0.20 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer4985 independent reflections
Radiation source: fine-focus sealed tube4341 reflections with I > 2σ(I)
graphiteRint = 0.021
phi and ω scansθmax = 27.6°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −12→12
Tmin = 0.650, Tmax = 0.811k = −29→25
21600 measured reflectionsl = −11→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.056H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.0263P)2 + 0.6416P] where P = (Fo2 + 2Fc2)/3
4985 reflections(Δ/σ)max = 0.001
215 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = −0.29 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ru10.825774 (14)0.078698 (6)0.112583 (14)0.03365 (5)
Cl10.77065 (6)0.17844 (2)0.18611 (7)0.06579 (16)
Cl20.93200 (5)0.12669 (2)−0.06104 (5)0.04993 (12)
Cl31.05200 (5)0.08727 (2)0.25339 (5)0.04920 (12)
N10.31839 (16)0.23549 (7)0.13845 (16)0.0425 (3)
C10.6908 (2)0.02804 (8)−0.04218 (19)0.0441 (4)
C20.8053 (2)−0.00847 (8)0.01545 (19)0.0423 (4)
H20.8615−0.0275−0.03860.051*
C30.83385 (19)−0.01594 (8)0.15289 (19)0.0410 (4)
H30.9099−0.03970.18830.049*
C40.7509 (2)0.01140 (8)0.24034 (19)0.0428 (4)
C50.6385 (2)0.04798 (9)0.1819 (2)0.0463 (4)
H50.58310.06740.23600.056*
C60.60824 (19)0.05587 (9)0.0431 (2)0.0459 (4)
H60.53260.07980.00770.055*
C70.6659 (3)0.03821 (12)−0.1883 (2)0.0685 (7)
H7A0.63190.0020−0.23250.103*
H7B0.75260.0499−0.21720.103*
H7C0.59690.0692−0.20910.103*
C80.7882 (3)0.00190 (11)0.3880 (2)0.0610 (6)
H80.8898−0.00620.40620.073*
C90.7137 (3)−0.05322 (14)0.4288 (3)0.0890 (9)
H9A0.7473−0.06210.52020.134*
H9B0.7326−0.08640.37470.134*
H9C0.6138−0.04600.41760.134*
C100.7606 (5)0.05526 (15)0.4702 (3)0.1227 (15)
H10A0.80530.08990.43950.184*
H10B0.79810.04800.56130.184*
H10C0.66070.06200.46200.184*
C110.3550 (2)0.18162 (9)0.0607 (2)0.0576 (5)
H11A0.45690.17930.06760.069*
H11B0.32370.14600.10210.069*
C120.2929 (3)0.18074 (11)−0.0842 (2)0.0627 (6)
H12A0.19190.1783−0.09280.094*
H12B0.32830.1467−0.12610.094*
H12C0.31900.2166−0.12590.094*
C130.1606 (2)0.23458 (10)0.1427 (2)0.0572 (5)
H13A0.11150.23680.05250.069*
H13B0.13680.19650.17900.069*
C140.1062 (3)0.28363 (14)0.2219 (3)0.0836 (8)
H14A0.15450.28230.31140.125*
H14B0.00680.27830.22180.125*
H14C0.12270.32160.18320.125*
C150.3564 (2)0.29344 (9)0.0761 (2)0.0579 (5)
H15A0.29730.2974−0.00940.069*
H15B0.33310.32620.13120.069*
C160.5080 (3)0.30030 (12)0.0562 (3)0.0790 (8)
H16A0.56720.30190.14080.118*
H16B0.51860.33650.00820.118*
H16C0.53490.26680.00670.118*
C170.4038 (2)0.23164 (10)0.2766 (2)0.0566 (5)
H17A0.50300.22900.26780.068*
H17B0.39060.26840.32340.068*
C180.3678 (3)0.17998 (12)0.3599 (2)0.0766 (8)
H18A0.27080.18290.37260.115*
H18B0.42740.18100.44440.115*
H18C0.38240.14310.31580.115*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ru10.03190 (8)0.02950 (8)0.03954 (8)−0.00283 (5)0.00533 (5)−0.00182 (5)
Cl10.0585 (3)0.0406 (3)0.0989 (5)0.0030 (2)0.0137 (3)−0.0210 (3)
Cl20.0508 (3)0.0453 (3)0.0540 (3)−0.0087 (2)0.0087 (2)0.0129 (2)
Cl30.0441 (3)0.0497 (3)0.0499 (3)−0.0087 (2)−0.0057 (2)−0.0015 (2)
N10.0421 (8)0.0339 (8)0.0505 (9)−0.0038 (6)0.0039 (7)0.0003 (7)
C10.0442 (10)0.0453 (10)0.0416 (10)−0.0154 (8)0.0022 (8)−0.0011 (8)
C20.0455 (10)0.0344 (9)0.0487 (11)−0.0097 (8)0.0131 (8)−0.0094 (8)
C30.0425 (10)0.0290 (9)0.0506 (10)−0.0036 (7)0.0046 (8)0.0001 (7)
C40.0476 (10)0.0392 (10)0.0427 (10)−0.0125 (8)0.0098 (8)−0.0011 (8)
C50.0388 (10)0.0467 (11)0.0571 (12)−0.0088 (8)0.0193 (9)−0.0090 (9)
C60.0317 (9)0.0445 (10)0.0598 (12)−0.0040 (8)0.0017 (8)0.0009 (9)
C70.0750 (16)0.0813 (17)0.0453 (12)−0.0296 (13)−0.0041 (11)0.0054 (11)
C80.0694 (15)0.0704 (15)0.0428 (11)−0.0186 (12)0.0074 (10)0.0022 (10)
C90.107 (2)0.093 (2)0.0583 (15)−0.0324 (17)−0.0146 (15)0.0351 (15)
C100.228 (5)0.098 (2)0.0498 (16)−0.030 (3)0.047 (2)−0.0173 (16)
C110.0643 (14)0.0416 (11)0.0652 (14)0.0036 (10)0.0047 (11)−0.0064 (10)
C120.0642 (14)0.0671 (15)0.0575 (13)−0.0073 (11)0.0116 (11)−0.0101 (11)
C130.0472 (11)0.0541 (12)0.0696 (14)−0.0064 (10)0.0060 (10)0.0012 (11)
C140.0657 (16)0.098 (2)0.093 (2)0.0031 (15)0.0288 (14)−0.0178 (16)
C150.0601 (13)0.0395 (11)0.0749 (15)−0.0028 (9)0.0124 (11)0.0111 (10)
C160.0641 (15)0.0775 (18)0.098 (2)−0.0149 (13)0.0197 (14)0.0261 (15)
C170.0574 (13)0.0534 (12)0.0559 (12)−0.0111 (10)−0.0021 (10)−0.0020 (10)
C180.0853 (18)0.0824 (18)0.0569 (14)−0.0217 (14)−0.0058 (13)0.0169 (13)

Geometric parameters (Å, °)

Ru1—C52.1390 (17)C9—H9A0.9600
Ru1—C32.1568 (17)C9—H9B0.9600
Ru1—C62.1598 (18)C9—H9C0.9600
Ru1—C42.1829 (18)C10—H10A0.9600
Ru1—C22.1837 (17)C10—H10B0.9600
Ru1—C12.1994 (18)C10—H10C0.9600
Ru1—Cl32.4216 (5)C11—C121.509 (3)
Ru1—Cl22.4238 (5)C11—H11A0.9700
Ru1—Cl12.4381 (5)C11—H11B0.9700
N1—C151.513 (2)C12—H12A0.9600
N1—C111.513 (3)C12—H12B0.9600
N1—C131.520 (2)C12—H12C0.9600
N1—C171.522 (3)C13—C141.503 (3)
C1—C61.407 (3)C13—H13A0.9700
C1—C21.423 (3)C13—H13B0.9700
C1—C71.492 (3)C14—H14A0.9600
C2—C31.398 (3)C14—H14B0.9600
C2—H20.9300C14—H14C0.9600
C3—C41.420 (3)C15—C161.505 (3)
C3—H30.9300C15—H15A0.9700
C4—C51.412 (3)C15—H15B0.9700
C4—C81.511 (3)C16—H16A0.9600
C5—C61.413 (3)C16—H16B0.9600
C5—H50.9300C16—H16C0.9600
C6—H60.9300C17—C181.506 (3)
C7—H7A0.9600C17—H17A0.9700
C7—H7B0.9600C17—H17B0.9700
C7—H7C0.9600C18—H18A0.9600
C8—C101.505 (4)C18—H18B0.9600
C8—C91.515 (3)C18—H18C0.9600
C8—H80.9800
C5—Ru1—C368.23 (7)C1—C6—H6119.5
C5—Ru1—C638.38 (8)C5—C6—H6119.5
C3—Ru1—C680.53 (7)Ru1—C6—H6130.5
C5—Ru1—C438.11 (8)C1—C7—H7A109.5
C3—Ru1—C438.20 (7)C1—C7—H7B109.5
C6—Ru1—C469.20 (7)H7A—C7—H7B109.5
C5—Ru1—C280.83 (7)C1—C7—H7C109.5
C3—Ru1—C237.58 (7)H7A—C7—H7C109.5
C6—Ru1—C267.89 (7)H7B—C7—H7C109.5
C4—Ru1—C268.89 (7)C10—C8—C4114.1 (2)
C5—Ru1—C168.90 (7)C10—C8—C9111.2 (2)
C3—Ru1—C168.36 (7)C4—C8—C9109.79 (18)
C6—Ru1—C137.66 (7)C10—C8—H8107.1
C4—Ru1—C182.12 (7)C4—C8—H8107.1
C2—Ru1—C137.87 (7)C9—C8—H8107.1
C5—Ru1—Cl3123.36 (6)C8—C9—H9A109.5
C3—Ru1—Cl387.79 (5)C8—C9—H9B109.5
C6—Ru1—Cl3161.29 (6)H9A—C9—H9B109.5
C4—Ru1—Cl392.61 (5)C8—C9—H9C109.5
C2—Ru1—Cl3110.56 (5)H9A—C9—H9C109.5
C1—Ru1—Cl3147.57 (6)H9B—C9—H9C109.5
C5—Ru1—Cl2148.21 (6)C8—C10—H10A109.5
C3—Ru1—Cl2124.59 (5)C8—C10—H10B109.5
C6—Ru1—Cl2110.85 (6)H10A—C10—H10B109.5
C4—Ru1—Cl2162.66 (5)C8—C10—H10C109.5
C2—Ru1—Cl294.75 (5)H10A—C10—H10C109.5
C1—Ru1—Cl288.26 (5)H10B—C10—H10C109.5
Cl3—Ru1—Cl287.805 (18)C12—C11—N1115.85 (18)
C5—Ru1—Cl187.77 (5)C12—C11—H11A108.3
C3—Ru1—Cl1147.52 (5)N1—C11—H11A108.3
C6—Ru1—Cl194.26 (6)C12—C11—H11B108.3
C4—Ru1—Cl1109.99 (5)N1—C11—H11B108.3
C2—Ru1—Cl1161.60 (5)H11A—C11—H11B107.4
C1—Ru1—Cl1124.18 (6)C11—C12—H12A109.5
Cl3—Ru1—Cl187.763 (19)C11—C12—H12B109.5
Cl2—Ru1—Cl187.35 (2)H12A—C12—H12B109.5
C15—N1—C11111.91 (16)C11—C12—H12C109.5
C15—N1—C13109.08 (15)H12A—C12—H12C109.5
C11—N1—C13108.33 (15)H12B—C12—H12C109.5
C15—N1—C17107.95 (15)C14—C13—N1115.65 (19)
C11—N1—C17107.80 (16)C14—C13—H13A108.4
C13—N1—C17111.80 (16)N1—C13—H13A108.4
C6—C1—C2117.97 (17)C14—C13—H13B108.4
C6—C1—C7122.1 (2)N1—C13—H13B108.4
C2—C1—C7119.9 (2)H13A—C13—H13B107.4
C6—C1—Ru169.65 (10)C13—C14—H14A109.5
C2—C1—Ru170.46 (10)C13—C14—H14B109.5
C7—C1—Ru1128.89 (14)H14A—C14—H14B109.5
C3—C2—C1120.37 (17)C13—C14—H14C109.5
C3—C2—Ru170.17 (10)H14A—C14—H14C109.5
C1—C2—Ru171.66 (10)H14B—C14—H14C109.5
C3—C2—H2119.8C16—C15—N1116.26 (18)
C1—C2—H2119.8C16—C15—H15A108.2
Ru1—C2—H2131.1N1—C15—H15A108.2
C2—C3—C4122.40 (18)C16—C15—H15B108.2
C2—C3—Ru172.26 (10)N1—C15—H15B108.2
C4—C3—Ru171.90 (10)H15A—C15—H15B107.4
C2—C3—H3118.8C15—C16—H16A109.5
C4—C3—H3118.8C15—C16—H16B109.5
Ru1—C3—H3129.7H16A—C16—H16B109.5
C5—C4—C3116.60 (17)C15—C16—H16C109.5
C5—C4—C8123.66 (18)H16A—C16—H16C109.5
C3—C4—C8119.71 (19)H16B—C16—H16C109.5
C5—C4—Ru169.26 (10)C18—C17—N1115.44 (17)
C3—C4—Ru169.90 (10)C18—C17—H17A108.4
C8—C4—Ru1130.04 (13)N1—C17—H17A108.4
C4—C5—C6121.64 (17)C18—C17—H17B108.4
C4—C5—Ru172.63 (10)N1—C17—H17B108.4
C6—C5—Ru171.61 (10)H17A—C17—H17B107.5
C4—C5—H5119.2C17—C18—H18A109.5
C6—C5—H5119.2C17—C18—H18B109.5
Ru1—C5—H5129.0H18A—C18—H18B109.5
C1—C6—C5121.00 (18)C17—C18—H18C109.5
C1—C6—Ru172.70 (10)H18A—C18—H18C109.5
C5—C6—Ru170.02 (10)H18B—C18—H18C109.5
C5—Ru1—C1—C628.91 (12)C2—Ru1—C4—C327.98 (11)
C3—Ru1—C1—C6102.96 (12)C1—Ru1—C4—C364.77 (12)
C4—Ru1—C1—C665.97 (12)Cl3—Ru1—C4—C3−83.08 (11)
C2—Ru1—C1—C6131.49 (17)Cl2—Ru1—C4—C37.9 (2)
Cl3—Ru1—C1—C6148.37 (10)Cl1—Ru1—C4—C3−171.65 (10)
Cl2—Ru1—C1—C6−128.49 (11)C5—Ru1—C4—C8−117.1 (2)
Cl1—Ru1—C1—C6−42.89 (13)C3—Ru1—C4—C8112.5 (2)
C5—Ru1—C1—C2−102.58 (12)C6—Ru1—C4—C8−146.1 (2)
C3—Ru1—C1—C2−28.52 (11)C2—Ru1—C4—C8140.4 (2)
C6—Ru1—C1—C2−131.49 (17)C1—Ru1—C4—C8177.2 (2)
C4—Ru1—C1—C2−65.52 (11)Cl3—Ru1—C4—C829.4 (2)
Cl3—Ru1—C1—C216.88 (16)Cl2—Ru1—C4—C8120.4 (2)
Cl2—Ru1—C1—C2100.02 (10)Cl1—Ru1—C4—C8−59.2 (2)
Cl1—Ru1—C1—C2−174.37 (9)C3—C4—C5—C61.4 (3)
C5—Ru1—C1—C7144.2 (2)C8—C4—C5—C6179.53 (18)
C3—Ru1—C1—C7−141.7 (2)Ru1—C4—C5—C654.47 (16)
C6—Ru1—C1—C7115.3 (3)C3—C4—C5—Ru1−53.09 (14)
C4—Ru1—C1—C7−178.7 (2)C8—C4—C5—Ru1125.06 (18)
C2—Ru1—C1—C7−113.2 (3)C3—Ru1—C5—C430.46 (11)
Cl3—Ru1—C1—C7−96.3 (2)C6—Ru1—C5—C4133.10 (17)
Cl2—Ru1—C1—C7−13.2 (2)C2—Ru1—C5—C467.33 (11)
Cl1—Ru1—C1—C772.5 (2)C1—Ru1—C5—C4104.70 (12)
C6—C1—C2—C3−0.2 (3)Cl3—Ru1—C5—C4−41.32 (12)
C7—C1—C2—C3176.88 (17)Cl2—Ru1—C5—C4151.52 (10)
Ru1—C1—C2—C352.52 (15)Cl1—Ru1—C5—C4−127.16 (11)
C6—C1—C2—Ru1−52.68 (15)C3—Ru1—C5—C6−102.64 (12)
C7—C1—C2—Ru1124.36 (17)C4—Ru1—C5—C6−133.10 (17)
C5—Ru1—C2—C3−66.02 (12)C2—Ru1—C5—C6−65.77 (12)
C6—Ru1—C2—C3−103.69 (12)C1—Ru1—C5—C6−28.40 (11)
C4—Ru1—C2—C3−28.40 (11)Cl3—Ru1—C5—C6−174.42 (9)
C1—Ru1—C2—C3−133.30 (16)Cl2—Ru1—C5—C618.41 (17)
Cl3—Ru1—C2—C356.28 (11)Cl1—Ru1—C5—C699.74 (11)
Cl2—Ru1—C2—C3145.71 (10)C2—C1—C6—C50.3 (3)
Cl1—Ru1—C2—C3−118.41 (17)C7—C1—C6—C5−176.69 (18)
C5—Ru1—C2—C167.27 (11)Ru1—C1—C6—C5−52.79 (16)
C3—Ru1—C2—C1133.30 (16)C2—C1—C6—Ru153.07 (14)
C6—Ru1—C2—C129.60 (11)C7—C1—C6—Ru1−123.90 (18)
C4—Ru1—C2—C1104.89 (12)C4—C5—C6—C1−0.9 (3)
Cl3—Ru1—C2—C1−170.43 (9)Ru1—C5—C6—C154.01 (16)
Cl2—Ru1—C2—C1−81.00 (10)C4—C5—C6—Ru1−54.94 (16)
Cl1—Ru1—C2—C114.9 (2)C5—Ru1—C6—C1−133.41 (17)
C1—C2—C3—C40.7 (3)C3—Ru1—C6—C1−66.68 (12)
Ru1—C2—C3—C453.89 (15)C4—Ru1—C6—C1−104.60 (12)
C1—C2—C3—Ru1−53.20 (15)C2—Ru1—C6—C1−29.76 (11)
C5—Ru1—C3—C2103.75 (13)Cl3—Ru1—C6—C1−118.74 (17)
C6—Ru1—C3—C265.86 (12)Cl2—Ru1—C6—C156.84 (12)
C4—Ru1—C3—C2134.14 (17)Cl1—Ru1—C6—C1145.63 (11)
C1—Ru1—C3—C228.73 (11)C3—Ru1—C6—C566.73 (12)
Cl3—Ru1—C3—C2−128.80 (11)C4—Ru1—C6—C528.82 (11)
Cl2—Ru1—C3—C2−43.00 (13)C2—Ru1—C6—C5103.65 (13)
Cl1—Ru1—C3—C2148.87 (9)C1—Ru1—C6—C5133.41 (17)
C5—Ru1—C3—C4−30.39 (11)Cl3—Ru1—C6—C514.7 (2)
C6—Ru1—C3—C4−68.28 (12)Cl2—Ru1—C6—C5−169.74 (10)
C2—Ru1—C3—C4−134.14 (17)Cl1—Ru1—C6—C5−80.96 (11)
C1—Ru1—C3—C4−105.41 (12)C5—C4—C8—C10−32.8 (3)
Cl3—Ru1—C3—C497.05 (11)C3—C4—C8—C10145.3 (2)
Cl2—Ru1—C3—C4−177.15 (9)Ru1—C4—C8—C1057.4 (3)
Cl1—Ru1—C3—C414.72 (17)C5—C4—C8—C992.9 (3)
C2—C3—C4—C5−1.3 (3)C3—C4—C8—C9−89.0 (3)
Ru1—C3—C4—C552.77 (14)Ru1—C4—C8—C9−176.91 (19)
C2—C3—C4—C8−179.49 (17)C15—N1—C11—C12−55.0 (2)
Ru1—C3—C4—C8−125.45 (17)C13—N1—C11—C1265.3 (2)
C2—C3—C4—Ru1−54.04 (15)C17—N1—C11—C12−173.51 (18)
C3—Ru1—C4—C5−130.42 (17)C15—N1—C13—C14−60.7 (3)
C6—Ru1—C4—C5−29.01 (11)C11—N1—C13—C14177.2 (2)
C2—Ru1—C4—C5−102.45 (12)C17—N1—C13—C1458.6 (3)
C1—Ru1—C4—C5−65.65 (12)C11—N1—C15—C16−56.5 (3)
Cl3—Ru1—C4—C5146.49 (10)C13—N1—C15—C16−176.3 (2)
Cl2—Ru1—C4—C5−122.52 (17)C17—N1—C15—C1662.0 (3)
Cl1—Ru1—C4—C557.93 (11)C15—N1—C17—C18173.4 (2)
C5—Ru1—C4—C3130.42 (17)C11—N1—C17—C18−65.5 (3)
C6—Ru1—C4—C3101.42 (12)C13—N1—C17—C1853.4 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2680).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Arslan, H., VanDerveer, D., Özdemir, İ., Gürbüz, N., Gök, Y. & Çetinkaya, B. (2009a). Acta Cryst. E65, m111–m112. [PMC free article] [PubMed]
  • Arslan, H., VanDerveer, D., Özdemir, İ., Gürbüz, N., Gök, Y. & Çetinkaya, B. (2009b). Acta Cryst. E65, m165–m166. [PMC free article] [PubMed]
  • Bruker (1998). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Lalrempuia, R., Kollipara, M. R., Carroll, P. J., Yap, G. P. A. & Kreisel, K. A. (2005). J. Organomet. Chem. 690, 3990–3996.
  • Le Bozec, H., Touchard, D. & Dixneuf, P. H. (1989). Adv. Organomet. Chem. 29, 163–247.
  • Liu, L., Zhang, Q.-F. & Leung, W.-H. (2004). Acta Cryst. E60, m506–m508.
  • Quebatte, L., Solari, E., Scopelliti, R. & Severin, K. (2005). Organometallics, 24, 1404–1406.
  • Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Solari, E., Antonijevic, S., Gauthier, S., Scopelliti, R. & Severin, R. (2007). Eur. J. Inorg. Chem. pp. 367–371.
  • Vock, C. A. & Dyson, P. J. (2007). Z. Anorg. Allg. Chem. 633, 640–642.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography