PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): o2992.
Published online 2009 November 4. doi:  10.1107/S1600536809044109
PMCID: PMC2971930

3-(2,4-Dichloro­phen­yl)-2-oxo-1-oxa­spiro­[4.5]dec-3-en-4-yl 4-chloro­benzoate

Abstract

In the title spiro­diclofen derivative, C22H17Cl3O4, the cyclo­hexane ring adopts a chair conformation [four C atoms are planar with a mean deviation of 0.018 Å and the two C atoms at the flap positions deviate by 0.613 (4) and −0.668 (5) Å from the plane]. The dihedral angles between the furan ring and the two benzene rings are 55.78 (3) and 49.92 (3)°. Weak inter­molecular C—H(...)Cl inter­actions are observed in the crystal structure.

Related literature

For the chemistry of tetronic acid, the central unit of the title compound, see: Fischer et al. (1993 [triangle]); Benson et al. (2000 [triangle]). For the pesticides Spiro­diclofen, Spiro­mesifen and Spiro­tetra­mate, see: BAYER Aktiengesellschaft (1995 [triangle]). For the synthesis and structure of the inter­mediate compound for the preparation of spiro­diclofen, see: Zhao et al. (2009 [triangle]). For the extinction correction, see: Larson (1970 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2992-scheme1.jpg

Experimental

Crystal data

  • C22H17Cl3O4
  • M r = 451.73
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2992-efi1.jpg
  • a = 14.7979 (8) Å
  • b = 10.3483 (5) Å
  • c = 15.0702 (8) Å
  • β = 115.1875 (12)°
  • V = 2088.33 (19) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.46 mm−1
  • T = 296 K
  • 0.46 × 0.32 × 0.28 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.800, T max = 0.878
  • 19403 measured reflections
  • 4756 independent reflections
  • 3289 reflections with F 2 > 2σ(F 2)
  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050
  • wR(F 2) = 0.131
  • S = 1.00
  • 4756 reflections
  • 263 parameters
  • All H-atom parameters refined
  • Δρmax = 0.54 e Å−3
  • Δρmin = −0.43 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998 [triangle]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002 [triangle]); program(s) used to solve structure: SIR97 (Altomare et al., 1993 [triangle]); program(s) used to refine structure: CRYSTALS (Watkin et al., 1996 [triangle]); molecular graphics: CRYSTALS; software used to prepare material for publication: CrystalStructure and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809044109/si2216sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809044109/si2216Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the National Natural Science Foundation of China (No. 30700532) and the Science and Technology Project of Zhejiang Province (No. 2009C21044) for financial support.

supplementary crystallographic information

Comment

The chemistry of tetronic acid compounds has being receiving increasing attention in recent years (Fischer et al.,1993; Benson et al., 2000). Bayer company have developed three tetronic acids pesticide-Spirodiclofen, Spiromesifen and Spirotetramat. 4-hydroxyl-3-(2,4-dichlorophenyl)-1- oxaspiro[4,5]dec-3-en-2-one (Zhao et al., 2009) is the key intermediate in preparing highly efficient acaricide-Spirodiclofen (BAYER et al.,1995). We have been involved in the synthesis and potential bioactivity of substituted 4-hydroxyl-3-(2,4-dichlorophenyl) -1-oxaspiro[4,5]dec-3-en-2-one. In order to find new compounds which have good bioactivity, we have isolated the product, (I), of the condensation reaction of 4-chlorobenzoyl chloride and 4-hydroxyl-3- (2,4-dichlorophenyl)-1-oxaspiro[4,5]dec-3-en-2-one as colorless crystals suitable for X-ray analysis. The molecular structure of (I) is shown in Fig. 1. The molecule contains three six membered rings and one five membered rings. The dihedral angles between the ring (C11—C16) and ring (C17—C22), ring (C11—C16) and furan ring, ring (C17—C22) and furan ring, are 67.84 (3), 55.78 (3), and 49.92 (3) °, respectively. The cyclohexane ring displays chair conformation with C1 and C7 atoms at the flap position 0.613 (4) and -0.668 (5) Å out of the mean plane formed by the other four atoms. As expected, C2—C3, C4—O1 and C10—O4 are typically double bonds with bond distances of 1.319 (3), 1.199 (3) and 1.190 (3) Å. The bond distance of C3—C4 is 1.487 (3) Å, suggesting that carbonyl group on C7 has formed a conjugate system with double bond on C2 and C3. It is worth notice that in the title compound there exist two weak intermolecular C—H···Cl contacts (Table 1).

Experimental

4-hydroxyl-3-(2,4-dichlorophenyl)-1-oxaspiro[4,5]dec-3-en-2-one (3.12 g, 10 mmol), 4-dimethylaminopyridine (0.58 g, 1eq.), triethylamine (1.31 g, 1.3eq.) and chloroform (100 ml) were added to a 250 ml round flask. Then the mixture was stirred and cooled to 273–278 K. Within 30 min 4-chlorobenzoyl chloride (1.5eq.) was added dropwise to the solution. The mixture was stirred at room temperature for 3 h and then 1% aqueous HCl was added. The organic layer was washed to neutral with water and dried over Na2SO4. After filtered and concentrated, the organic residue was purified by silica gel column chromatography, eluted with ethyl acetate-petroleum(1:30,v/v) to give a white solid (yield 85%, 3.96 g), which was then recrystallized from ethyl acetate/ethanol (1:1,v/v) to give colourless blocks.

The 1H NMR, EI-MS data testified the title compound's structure. 1H-NMR (500MHz, CDCl3, δ ppm):7.969-7.942 (2H, m, -CO-Ph-H4), 7.492-7.465 (2H, m, -CO-Ph-H4), 7.455-7.301 (3H, m, Cl2-Ph-H3), 1.876-1.802 (10H, m, cyclohexane-H10); EI-MS (70eV, m/z) (relative intensity %): 452 (M+2, 5), 450 (M+, 5),141 (33) ,139 (100). So we are sure that our chemical formula of the compound is correctly presented.

Refinement

The H atoms were geometrically placed (C–H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
Molecular packing arrangement in the unit cell.

Crystal data

C22H17Cl3O4F(000) = 928.00
Mr = 451.73Dx = 1.437 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ynCell parameters from 13096 reflections
a = 14.7979 (8) Åθ = 3.0–27.4°
b = 10.3483 (5) ŵ = 0.46 mm1
c = 15.0702 (8) ÅT = 296 K
β = 115.1875 (12)°Chunk, colorless
V = 2088.33 (19) Å30.46 × 0.32 × 0.28 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID diffractometer3289 reflections with F2 > 2σ(F2)
Detector resolution: 10.00 pixels mm-1Rint = 0.029
ω scansθmax = 27.4°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)h = −19→19
Tmin = 0.800, Tmax = 0.878k = −13→12
19403 measured reflectionsl = −19→19
4756 independent reflections

Refinement

Refinement on F2w = 1/[0.0005Fo2 + 3σ(Fo2)]/(4Fo2)
R[F2 > 2σ(F2)] = 0.050(Δ/σ)max < 0.001
wR(F2) = 0.131Δρmax = 0.54 e Å3
S = 1.00Δρmin = −0.43 e Å3
4756 reflectionsExtinction correction: Larson (1970), equation 22
263 parametersExtinction coefficient: 127 (22)
All H-atom parameters refined

Special details

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY
Refinement. Refinement using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.59797 (8)−0.25919 (9)0.12627 (8)0.0964 (3)
Cl20.43688 (6)0.27225 (6)0.35188 (6)0.0706 (2)
Cl30.74849 (6)0.44566 (10)0.67014 (5)0.0783 (2)
O10.41594 (14)0.74637 (17)0.27583 (14)0.0635 (6)
O20.32741 (12)0.64354 (18)0.13360 (12)0.0526 (5)
O30.43940 (12)0.33403 (16)0.14982 (12)0.0499 (5)
O40.60304 (16)0.3775 (2)0.2079 (2)0.0823 (8)
C10.32759 (19)0.5153 (2)0.09125 (19)0.0475 (7)
C20.41627 (18)0.4558 (2)0.17081 (19)0.0426 (7)
C30.45501 (19)0.5243 (2)0.25228 (19)0.0441 (7)
C40.4012 (2)0.6500 (2)0.2275 (2)0.0495 (8)
C50.3374 (2)0.5343 (2)−0.00451 (19)0.0545 (8)
C60.2448 (2)0.5961 (3)−0.0843 (2)0.0693 (10)
C70.1506 (2)0.5212 (3)−0.0994 (2)0.0712 (10)
C80.1395 (2)0.5091 (3)−0.0036 (2)0.0653 (9)
C90.23153 (18)0.4468 (2)0.0752 (2)0.0523 (8)
C100.5376 (2)0.3002 (3)0.1748 (2)0.0548 (9)
C110.54804 (19)0.1611 (2)0.15495 (19)0.0452 (7)
C120.6420 (2)0.1213 (2)0.1683 (2)0.0553 (8)
C130.6566 (2)−0.0088 (3)0.1565 (2)0.0628 (10)
C140.5783 (2)−0.0928 (2)0.1331 (2)0.0552 (8)
C150.4847 (2)−0.0556 (2)0.1182 (2)0.0620 (9)
C160.4699 (2)0.0755 (2)0.1285 (2)0.0586 (9)
C170.53097 (19)0.5005 (2)0.35283 (19)0.0454 (7)
C180.52788 (19)0.3912 (2)0.4051 (2)0.0482 (8)
C190.5946 (2)0.3713 (2)0.5033 (2)0.0528 (8)
C200.6659 (2)0.4649 (2)0.5479 (2)0.0530 (8)
C210.6719 (2)0.5728 (3)0.4985 (2)0.0620 (9)
C220.6042 (2)0.5900 (3)0.4017 (2)0.0620 (9)
H120.69410.18010.18470.066*
H130.7188−0.03860.16440.075*
H150.4330−0.11500.10190.074*
H160.40670.10520.11740.070*
H190.59080.29790.53720.063*
H210.72100.63440.52970.074*
H220.60840.66410.36870.074*
H510.39440.58960.00790.065*
H520.34810.4507−0.02760.065*
H610.23860.6841−0.06540.083*
H620.25210.5969−0.14540.083*
H710.15440.4355−0.12360.085*
H720.09290.5662−0.14720.085*
H810.08160.4562−0.01460.078*
H820.13060.59440.01810.078*
H910.22450.44750.13630.063*
H920.23560.35830.05610.063*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.1031 (7)0.0598 (5)0.1127 (7)0.0265 (5)0.0329 (6)−0.0117 (5)
Cl20.0826 (5)0.0506 (4)0.0693 (5)−0.0178 (4)0.0235 (4)0.0017 (3)
Cl30.0571 (4)0.1195 (8)0.0503 (4)0.0126 (5)0.0151 (3)0.0049 (4)
O10.0807 (14)0.0348 (11)0.0636 (12)0.0022 (9)0.0196 (10)−0.0103 (9)
O20.0553 (11)0.0493 (11)0.0461 (10)0.0078 (9)0.0148 (9)−0.0039 (9)
O30.0434 (10)0.0383 (10)0.0612 (11)0.0034 (8)0.0158 (8)−0.0091 (8)
O40.0564 (12)0.0581 (14)0.138 (2)−0.0125 (11)0.0469 (13)−0.0256 (14)
C10.0482 (15)0.0472 (16)0.0453 (15)0.0039 (12)0.0182 (12)−0.0063 (13)
C20.0475 (14)0.0247 (13)0.0544 (16)0.0009 (11)0.0206 (13)−0.0045 (12)
C30.0459 (14)0.0333 (14)0.0511 (15)−0.0006 (11)0.0187 (12)0.0004 (12)
C40.0531 (16)0.0442 (17)0.0501 (16)−0.0031 (13)0.0208 (14)−0.0017 (14)
C50.0606 (17)0.0535 (18)0.0522 (16)0.0033 (14)0.0268 (14)−0.0028 (14)
C60.075 (2)0.081 (2)0.0465 (16)0.0048 (18)0.0204 (15)0.0007 (16)
C70.073 (2)0.061 (2)0.0576 (19)0.0062 (17)0.0067 (17)−0.0070 (16)
C80.0466 (16)0.066 (2)0.075 (2)0.0016 (14)0.0172 (15)−0.0164 (17)
C90.0508 (16)0.0480 (17)0.0576 (16)−0.0013 (13)0.0225 (14)−0.0034 (14)
C100.0412 (15)0.072 (2)0.0535 (17)−0.0007 (15)0.0229 (13)−0.0034 (15)
C110.0472 (15)0.0394 (15)0.0482 (15)0.0087 (12)0.0196 (13)0.0017 (12)
C120.0523 (16)0.0440 (17)0.0713 (19)0.0035 (14)0.0279 (15)−0.0033 (15)
C130.0522 (17)0.074 (2)0.0634 (19)0.0174 (17)0.0254 (15)0.0025 (17)
C140.071 (2)0.0293 (14)0.0596 (18)0.0143 (14)0.0227 (16)−0.0001 (13)
C150.0619 (19)0.0420 (17)0.077 (2)0.0028 (15)0.0241 (16)−0.0074 (15)
C160.0395 (15)0.072 (2)0.0635 (18)0.0048 (15)0.0213 (14)−0.0003 (16)
C170.0463 (15)0.0402 (15)0.0479 (15)0.0015 (12)0.0184 (13)0.0011 (13)
C180.0489 (15)0.0411 (16)0.0537 (16)0.0019 (12)0.0209 (13)−0.0061 (13)
C190.0581 (16)0.0458 (17)0.0562 (17)0.0120 (14)0.0259 (14)0.0052 (14)
C200.0487 (16)0.0595 (19)0.0495 (16)0.0098 (14)0.0197 (13)0.0009 (15)
C210.0494 (17)0.068 (2)0.0589 (18)−0.0103 (15)0.0138 (15)−0.0052 (16)
C220.0545 (17)0.074 (2)0.0522 (17)−0.0163 (15)0.0176 (15)−0.0006 (16)

Geometric parameters (Å, °)

Cl1—C141.757 (2)C15—C161.393 (4)
Cl2—C181.747 (2)C17—C181.390 (3)
Cl3—C201.736 (2)C17—C221.377 (3)
O1—C41.199 (3)C18—C191.402 (3)
O2—C11.473 (3)C19—C201.378 (3)
O2—C41.373 (2)C20—C211.366 (4)
O3—C21.377 (3)C21—C221.386 (3)
O3—C101.382 (3)C5—H510.970
O4—C101.190 (3)C5—H520.970
C1—C21.483 (3)C6—H610.970
C1—C51.523 (4)C6—H620.970
C1—C91.513 (3)C7—H710.970
C2—C31.319 (3)C7—H720.970
C3—C41.487 (3)C8—H810.970
C3—C171.473 (3)C8—H820.970
C5—C61.527 (3)C9—H910.970
C6—C71.524 (4)C9—H920.970
C7—C81.526 (5)C12—H120.930
C8—C91.517 (3)C13—H130.930
C10—C111.492 (4)C15—H150.930
C11—C121.380 (4)C16—H160.930
C11—C161.374 (3)C19—H190.930
C12—C131.386 (4)C21—H210.930
C13—C141.369 (4)C22—H220.930
C14—C151.361 (4)
C1—O2—C4110.07 (18)Cl3—C20—C21119.5 (2)
C2—O3—C10120.29 (19)C19—C20—C21121.6 (2)
O2—C1—C2100.83 (17)C20—C21—C22119.5 (2)
O2—C1—C5108.2 (2)C17—C22—C21121.9 (2)
O2—C1—C9108.5 (2)C1—C5—H51108.7
C2—C1—C5114.3 (2)C1—C5—H52108.7
C2—C1—C9112.5 (2)C6—C5—H51108.7
C5—C1—C9111.7 (2)C6—C5—H52108.7
O3—C2—C1114.5 (2)H51—C5—H52109.5
O3—C2—C3130.8 (2)C5—C6—H61109.0
C1—C2—C3114.5 (2)C5—C6—H62109.0
C2—C3—C4105.2 (2)C7—C6—H61109.0
C2—C3—C17135.0 (2)C7—C6—H62109.0
C4—C3—C17119.8 (2)H61—C6—H62109.5
O1—C4—O2121.7 (2)C6—C7—H71109.1
O1—C4—C3129.5 (2)C6—C7—H72109.1
O2—C4—C3108.8 (2)C8—C7—H71109.1
C1—C5—C6112.7 (2)C8—C7—H72109.1
C5—C6—C7111.2 (2)H71—C7—H72109.5
C6—C7—C8111.2 (2)C7—C8—H81109.2
C7—C8—C9110.7 (2)C7—C8—H82109.2
C1—C9—C8113.3 (2)C9—C8—H81109.2
O3—C10—O4121.2 (2)C9—C8—H82109.2
O3—C10—C11112.1 (2)H81—C8—H82109.5
O4—C10—C11126.7 (2)C1—C9—H91108.5
C10—C11—C12116.3 (2)C1—C9—H92108.5
C10—C11—C16122.3 (2)C8—C9—H91108.5
C12—C11—C16121.4 (2)C8—C9—H92108.5
C11—C12—C13118.2 (2)H91—C9—H92109.5
C12—C13—C14119.3 (3)C11—C12—H12120.9
Cl1—C14—C13119.7 (2)C13—C12—H12120.9
Cl1—C14—C15116.7 (2)C12—C13—H13120.4
C13—C14—C15123.6 (2)C14—C13—H13120.4
C14—C15—C16117.0 (2)C14—C15—H15121.5
C11—C16—C15120.5 (2)C16—C15—H15121.5
C3—C17—C18121.6 (2)C11—C16—H16119.8
C3—C17—C22121.3 (2)C15—C16—H16119.8
C18—C17—C22116.9 (2)C18—C19—H19121.3
Cl2—C18—C17121.20 (17)C20—C19—H19121.3
Cl2—C18—C19116.1 (2)C20—C21—H21120.2
C17—C18—C19122.6 (2)C22—C21—H21120.2
C18—C19—C20117.4 (2)C17—C22—H22119.1
Cl3—C20—C19119.0 (2)C21—C22—H22119.1
C1—O2—C4—O1178.8 (3)C17—C3—C4—O2−173.4 (2)
C1—O2—C4—C30.2 (3)C1—C5—C6—C7−53.4 (3)
C4—O2—C1—C2−4.5 (3)C5—C6—C7—C855.8 (3)
C4—O2—C1—C5−124.7 (2)C6—C7—C8—C9−56.1 (3)
C4—O2—C1—C9113.9 (2)C7—C8—C9—C154.5 (3)
C2—O3—C10—O4−5.7 (4)O3—C10—C11—C12173.7 (2)
C2—O3—C10—C11174.4 (2)O3—C10—C11—C16−8.8 (4)
C10—O3—C2—C1137.8 (2)O4—C10—C11—C12−6.2 (5)
C10—O3—C2—C3−48.0 (4)O4—C10—C11—C16171.4 (3)
O2—C1—C2—O3−176.7 (2)C10—C11—C12—C13176.1 (2)
O2—C1—C2—C38.1 (3)C10—C11—C16—C15−174.9 (2)
O2—C1—C5—C6−68.4 (2)C12—C11—C16—C152.6 (4)
O2—C1—C9—C867.4 (3)C16—C11—C12—C13−1.5 (4)
C2—C1—C5—C6−179.8 (2)C11—C12—C13—C14−0.5 (4)
C5—C1—C2—O3−60.9 (3)C12—C13—C14—Cl1−175.6 (2)
C5—C1—C2—C3124.0 (2)C12—C13—C14—C151.5 (4)
C2—C1—C9—C8178.0 (2)Cl1—C14—C15—C16176.8 (2)
C9—C1—C2—O367.9 (3)C13—C14—C15—C16−0.4 (4)
C9—C1—C2—C3−107.2 (3)C14—C15—C16—C11−1.6 (4)
C5—C1—C9—C8−51.8 (3)C3—C17—C18—Cl23.1 (4)
C9—C1—C5—C651.0 (3)C3—C17—C18—C19−174.9 (3)
O3—C2—C3—C4177.6 (3)C3—C17—C22—C21175.5 (3)
O3—C2—C3—C17−4.5 (6)C18—C17—C22—C21−0.2 (4)
C1—C2—C3—C4−8.2 (3)C22—C17—C18—Cl2178.7 (2)
C1—C2—C3—C17169.7 (3)C22—C17—C18—C190.8 (4)
C2—C3—C4—O1−173.7 (3)Cl2—C18—C19—C20−178.7 (2)
C2—C3—C4—O24.9 (3)C17—C18—C19—C20−0.6 (4)
C2—C3—C17—C18−50.1 (5)C18—C19—C20—Cl3178.8 (2)
C2—C3—C17—C22134.5 (3)C18—C19—C20—C21−0.1 (4)
C4—C3—C17—C18127.6 (3)Cl3—C20—C21—C22−178.2 (2)
C4—C3—C17—C22−47.9 (4)C19—C20—C21—C220.7 (5)
C17—C3—C4—O18.0 (5)C20—C21—C22—C17−0.6 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C5—H52···Cl1i0.972.793.726 (3)162
C16—H16···Cl3ii0.932.823.595 (3)141

Symmetry codes: (i) −x+1, −y, −z; (ii) x−1/2, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2216).

References

  • Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
  • BAYER Aktiengesellschaft (1995). WO patent No. 9 504 719A1.
  • Benson, D. A., Lipman, D. J., Ostell, J., Rapp, B. A., Wheeler, D. L. & Genbank, N. (2000). Acids Res. 28, 15–18. [PMC free article] [PubMed]
  • Fischer, R. M., Bretschneider, T. S. & Kruger, B.-W. (1993). US Patent No. 5 262 383.
  • Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
  • Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
  • Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291–294. Copenhagen: Munksgaard.
  • Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Watkin, D. J., Prout, C. K., Carruthers, J. R. & Betteridge, P. W. (1996). CRYSTALS. Chemical Crystallography Laboratory, Oxford, England.
  • Zhao, J. H., Zhou, Y., Xu, X. H., Cheng, J. L. & Zhu, G. N. (2009). Chin. J. Struct. Chem. 28, 837–840.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography