PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): o3113.
Published online 2009 November 18. doi:  10.1107/S1600536809048028
PMCID: PMC2971927

N′-[(E)-2-Hydroxy­benzyl­idene]-5-methyl­isoxazole-4-carbohydrazide monohydrate

Abstract

In the structure of the title compound, C12H11N3O3·H2O, the dihedral angle formed by the benzene and isoxazole rings is 2.03 (8)°. The mol­ecular conformation is stabilized by an intra­molecular O—H(...)N hydrogen bond. In the crystal structure, mol­ecules are linked into a three-dimesional network by inter­molecular N—H(...)O, O—H(...)N and O—H(...)O hydrogen bonds, and by π–π stacking inter­actions involving adjacent benzene and isoxazole rings [centroid–centroid separation = 3.663 (2) Å].

Related literature

For the biological and coordination properties of hydrazine compounds, see: Molina et al. (1994 [triangle]); Reiter et al. (1985 [triangle]); Sato et al. (1998 [triangle]); Edwards et al. (1975 [triangle]). For the pharmaceutical activity of isoxazole compounds, see: Stevens & Albizati (1984 [triangle]); El-Gaby et al. (2002 [triangle]). For the synthesis of the title compound, see: Jin et al. (2008 [triangle]). For reference structural data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o3113-scheme1.jpg

Experimental

Crystal data

  • C12H11N3O3·H2O
  • M r = 263.25
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-o3113-efi1.jpg
  • a = 12.8783 (6) Å
  • b = 11.3108 (6) Å
  • c = 8.6535 (4) Å
  • V = 1260.50 (11) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 296 K
  • 0.48 × 0.39 × 0.28 mm

Data collection

  • Bruker APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2004 [triangle]) T min = 0.951, T max = 0.971
  • 12295 measured reflections
  • 1432 independent reflections
  • 1279 reflections with I > 2σ(I)
  • R int = 0.039

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032
  • wR(F 2) = 0.092
  • S = 0.89
  • 1432 reflections
  • 182 parameters
  • 5 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.14 e Å−3
  • Δρmin = −0.14 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809048028/rz2385sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809048028/rz2385Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge financial support by the Zhejiang Provincial Natural Science Foundation of China (No.Y406049).

supplementary crystallographic information

Comment

The interest in the study of hydrazine compounds has recently grown due to their biological activities (Molina et al.1994; Sato et al.1998) and coordination ability (Reiter et al.1985; Edwards et al.1975). Isoxazole compounds have been widely studied because they exhibit some fungicidal activity, plant-growth regulating activity and antibacterial activity (Stevens et al.1984). Some isoxazole derivatives (El-Gaby et al.2002) are widely used as insecticides, herbicides and bactericides. However, compounds containing both the hydrazine and isoxazole groups has scarcely been reported. In order to search for more effective antibacterial medicines, we synthesized the title compound and report here its crystal structure.

The molecular structure of the title compounds is shown in Fig. 1. The molecule is almost planar, the dihedral angle between the benzene and the isoxazole rings being 2.03 (8)°. Bond lengths (Allen et al., 1987) and angles in the molecule are within normal ranges. The molecular conformation is enforced by an intramolecular O—H···N hydrogen bond (Table 1). In the crystal packing (Fig. 2), molecules are linked into supramolecular layers by intermolecular O—H···N and N—H···O hydrogen bonds, and by π–π stacking interactions involving adjacent benzene and isoxazole rings, with a centroid-to-centroid separation of 3.663 (2) Å. The layers are further linked by intermolecular O—H···O hydrogen bonds to form a three-dimensional network.

Experimental

The title compound, C12H13N3O4, was synthesized according to the literature method (Jin et al.2008). Salicylaldehyde (1.44 ml) was added into a solution of 5-methylisoxazole-4-carbonyl hydrazine (2.0 g, 0.014 mol) in anhydrous ethanol (40 ml). The mixture was refluxed for 2 h, then the precipitate was collected by filtration and washed with water, chloroform and ethanol. The product was recrystallized from ethanol, then dried under reduced pressure (yield 84.5%). Pink block-shaped crystals were obtained by slow evaporation of a dimethylformamide solution.

Refinement

The water and hydroxyl H atoms were located in a difference Fourier map and isotropically refined with the O—H distance restrained to 0.86 (1) Å. All other H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93–0.96 Å, N—H = 0.86 Å, and with Uiso(H) = 1.2 Ueq(C, N) or 1.5 Ueq(C) for methyl H atoms. In the absence of significant anomalous scattering effects, Friedel pairs were merged in the final refinement.

Figures

Fig. 1.
The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
Packing diagram of the title compound. Intermolecular hydrogen bonds are shown as dashed lines.

Crystal data

C12H11N3O3·H2OF(000) = 552
Mr = 263.25Dx = 1.387 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 6440 reflections
a = 12.8783 (6) Åθ = 2.4–27.0°
b = 11.3108 (6) ŵ = 0.11 mm1
c = 8.6535 (4) ÅT = 296 K
V = 1260.50 (11) Å3Block, pink
Z = 40.48 × 0.39 × 0.28 mm

Data collection

Bruker APEXII area-detector diffractometer1432 independent reflections
Radiation source: fine-focus sealed tube1279 reflections with I > 2σ(I)
graphiteRint = 0.039
ω scansθmax = 27.0°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 2004)h = −16→16
Tmin = 0.951, Tmax = 0.971k = −12→13
12295 measured reflectionsl = −10→11

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 0.89w = 1/[σ2(Fo2) + (0.0725P)2 + 0.135P] where P = (Fo2 + 2Fc2)/3
1432 reflections(Δ/σ)max = 0.097
182 parametersΔρmax = 0.14 e Å3
5 restraintsΔρmin = −0.14 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.14390 (16)−0.00283 (18)0.3335 (3)0.0565 (5)
N20.24031 (12)0.15708 (15)0.7518 (2)0.0421 (4)
H2B0.17440.15230.73680.051*
N30.27882 (14)0.20055 (16)0.8883 (2)0.0416 (4)
O1W0.01706 (11)0.16789 (14)0.7294 (2)0.0559 (4)
H1W1−0.026 (2)0.123 (2)0.776 (4)0.084*
H1W2−0.019 (2)0.2255 (19)0.704 (4)0.084*
O10.24526 (12)−0.01962 (14)0.2774 (2)0.0550 (4)
O20.40155 (10)0.13200 (14)0.6549 (2)0.0517 (4)
O30.43156 (13)0.25524 (19)1.0747 (2)0.0648 (5)
C10.26059 (14)0.06858 (16)0.5035 (3)0.0373 (4)
C20.15530 (16)0.0488 (2)0.4659 (3)0.0467 (5)
H2A0.10020.07040.52940.056*
C30.31271 (16)0.02328 (18)0.3808 (3)0.0442 (5)
C40.42389 (18)0.0114 (3)0.3423 (4)0.0716 (8)
H4A0.4309−0.02510.24270.107*
H4B0.4575−0.03670.41890.107*
H4C0.45550.08820.34040.107*
C50.30730 (14)0.12213 (16)0.6423 (3)0.0376 (4)
C60.25002 (15)0.27711 (17)1.1395 (3)0.0390 (4)
C70.35615 (16)0.29084 (19)1.1731 (3)0.0443 (5)
C80.3861 (2)0.3415 (2)1.3120 (3)0.0578 (6)
H8A0.45630.35001.33470.069*
C90.3126 (2)0.3794 (2)1.4164 (3)0.0583 (6)
H9A0.33360.41431.50860.070*
C100.2090 (2)0.3664 (2)1.3859 (3)0.0568 (6)
H10A0.15980.39121.45760.068*
C110.17799 (17)0.31606 (19)1.2483 (3)0.0488 (5)
H11A0.10750.30801.22770.059*
C120.21445 (16)0.22851 (18)0.9941 (3)0.0422 (5)
H12A0.14370.21760.97760.051*
H3A0.403 (2)0.224 (2)0.994 (3)0.070 (9)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0478 (11)0.0662 (12)0.0556 (12)−0.0047 (9)−0.0081 (9)−0.0123 (11)
N20.0321 (8)0.0543 (9)0.0399 (9)−0.0018 (7)−0.0076 (7)−0.0024 (8)
N30.0401 (8)0.0488 (9)0.0358 (9)0.0008 (7)−0.0086 (8)−0.0013 (7)
O1W0.0322 (7)0.0646 (9)0.0708 (11)0.0027 (6)0.0057 (8)0.0108 (9)
O10.0562 (9)0.0595 (9)0.0491 (9)−0.0023 (7)0.0009 (8)−0.0155 (8)
O20.0307 (7)0.0630 (9)0.0613 (10)0.0010 (6)−0.0087 (7)−0.0070 (8)
O30.0354 (8)0.1088 (15)0.0502 (9)0.0052 (8)−0.0047 (7)−0.0136 (11)
C10.0325 (9)0.0358 (9)0.0434 (10)0.0001 (7)−0.0015 (9)0.0017 (8)
C20.0353 (10)0.0559 (12)0.0488 (12)−0.0004 (8)−0.0036 (9)−0.0076 (10)
C30.0431 (11)0.0424 (10)0.0471 (12)0.0001 (8)0.0011 (10)−0.0017 (9)
C40.0479 (13)0.0867 (19)0.080 (2)0.0068 (12)0.0167 (14)−0.0125 (17)
C50.0350 (9)0.0360 (9)0.0420 (11)0.0000 (7)−0.0068 (8)0.0030 (9)
C60.0377 (9)0.0405 (9)0.0388 (10)0.0009 (7)−0.0030 (8)0.0058 (9)
C70.0386 (10)0.0553 (11)0.0390 (11)0.0012 (8)−0.0051 (9)0.0017 (10)
C80.0486 (13)0.0720 (16)0.0528 (13)−0.0036 (11)−0.0138 (11)−0.0078 (12)
C90.0750 (17)0.0579 (14)0.0420 (13)0.0036 (11)−0.0105 (12)−0.0088 (11)
C100.0636 (15)0.0623 (14)0.0443 (12)0.0138 (11)0.0049 (12)−0.0057 (11)
C110.0427 (10)0.0545 (12)0.0491 (12)0.0040 (9)0.0003 (11)0.0015 (11)
C120.0355 (9)0.0485 (11)0.0426 (11)−0.0002 (8)−0.0068 (9)0.0030 (9)

Geometric parameters (Å, °)

N1—C21.294 (3)C3—C41.476 (3)
N1—O11.405 (3)C4—H4A0.9600
N2—C51.341 (3)C4—H4B0.9600
N2—N31.372 (2)C4—H4C0.9600
N2—H2B0.8600C6—C111.393 (3)
N3—C121.274 (3)C6—C71.406 (3)
O1W—H1W10.851 (17)C6—C121.448 (3)
O1W—H1W20.831 (17)C7—C81.386 (3)
O1—C31.338 (3)C8—C91.377 (4)
O2—C51.224 (2)C8—H8A0.9300
O3—C71.353 (3)C9—C101.368 (4)
O3—H3A0.864 (18)C9—H9A0.9300
C1—C31.356 (3)C10—C111.379 (4)
C1—C21.412 (3)C10—H10A0.9300
C1—C51.474 (3)C11—H11A0.9300
C2—H2A0.9300C12—H12A0.9300
C2—N1—O1105.15 (19)O2—C5—C1121.0 (2)
C5—N2—N3118.78 (15)N2—C5—C1115.76 (15)
C5—N2—H2B120.6C11—C6—C7118.2 (2)
N3—N2—H2B120.6C11—C6—C12119.79 (19)
C12—N3—N2118.15 (17)C7—C6—C12121.9 (2)
H1W1—O1W—H1W2103 (2)O3—C7—C8118.0 (2)
C3—O1—N1108.85 (18)O3—C7—C6122.3 (2)
C7—O3—H3A109 (2)C8—C7—C6119.7 (2)
C3—C1—C2103.6 (2)C9—C8—C7120.4 (2)
C3—C1—C5126.24 (18)C9—C8—H8A119.8
C2—C1—C5130.1 (2)C7—C8—H8A119.8
N1—C2—C1112.6 (2)C10—C9—C8120.7 (2)
N1—C2—H2A123.7C10—C9—H9A119.7
C1—C2—H2A123.7C8—C9—H9A119.7
O1—C3—C1109.82 (18)C9—C10—C11119.6 (2)
O1—C3—C4116.5 (2)C9—C10—H10A120.2
C1—C3—C4133.7 (2)C11—C10—H10A120.2
C3—C4—H4A109.5C10—C11—C6121.4 (2)
C3—C4—H4B109.5C10—C11—H11A119.3
H4A—C4—H4B109.5C6—C11—H11A119.3
C3—C4—H4C109.5N3—C12—C6120.83 (18)
H4A—C4—H4C109.5N3—C12—H12A119.6
H4B—C4—H4C109.5C6—C12—H12A119.6
O2—C5—N2123.2 (2)
C5—N2—N3—C12−176.93 (18)C2—C1—C5—N20.6 (3)
C2—N1—O1—C30.1 (2)C11—C6—C7—O3179.8 (2)
O1—N1—C2—C10.2 (2)C12—C6—C7—O3−2.7 (3)
C3—C1—C2—N1−0.3 (2)C11—C6—C7—C80.3 (3)
C5—C1—C2—N1−178.83 (19)C12—C6—C7—C8177.8 (2)
N1—O1—C3—C1−0.3 (2)O3—C7—C8—C9179.9 (2)
N1—O1—C3—C4179.0 (2)C6—C7—C8—C9−0.6 (4)
C2—C1—C3—O10.3 (2)C7—C8—C9—C100.9 (4)
C5—C1—C3—O1178.94 (17)C8—C9—C10—C11−0.8 (4)
C2—C1—C3—C4−178.7 (3)C9—C10—C11—C60.6 (4)
C5—C1—C3—C4−0.1 (4)C7—C6—C11—C10−0.3 (3)
N3—N2—C5—O2−3.5 (3)C12—C6—C11—C10−177.9 (2)
N3—N2—C5—C1175.77 (16)N2—N3—C12—C6−178.73 (16)
C3—C1—C5—O21.7 (3)C11—C6—C12—N3174.73 (19)
C2—C1—C5—O2179.9 (2)C7—C6—C12—N3−2.7 (3)
C3—C1—C5—N2−177.57 (19)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3A···N30.87 (3)1.89 (2)2.617 (2)145 (2)
N2—H2B···O1W0.862.042.8847 (17)169
O1W—H1W1···N1i0.85 (3)2.10 (2)2.9304 (19)166 (2)
O1W—H1W2···O2ii0.83 (2)1.96 (2)2.7850 (17)176 (2)

Symmetry codes: (i) −x, −y, z+1/2; (ii) x−1/2, −y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2385).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Edwards, E. I., Epton, R. & Marr, G. (1975). J. Organomet. Chem. 85, 23–25.
  • El-Gaby, M. A., Micky, J. & Taha, N. (2002). J. Chin. Chem. Soc. 49, 407–414.
  • Jin, Y. X., Pan, F. Y., Jia, W. P. & Qian, Q. (2008). J. Sci. Technol. Eng. 8, 1015–1017.
  • Molina, P., Almendros, O. & Fresneda, P. M. (1994). Tetrahedron, 50, 2241–2243.
  • Reiter, J., Somoral, T. & Dvortsak, P. (1985). Heterocycl. Chem. 22, 385–394.
  • Sato, H., Tsuda, M. & Watanabe, K. (1998). Tetrahedron, 54, 8687–8689.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stevens, R. V. & Albizati, K. F. (1984). Tetrahedron Lett. 25, 4587–4591.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography