PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): m1528–m1529.
Published online 2009 November 7. doi:  10.1107/S1600536809043050
PMCID: PMC2971923

Di-μ-iodido-bis­[acet­yl(4-methyl-2,6,7-trioxa-1-phosphabicyclo­[2.2.2]octa­ne)(N-nitroso-N-oxidoaniline-κ2 O,O′)rhodium(III)]

Abstract

The title compound, [Rh2(C6H5N2O2)2(C2H3O)2I2(C5H9O3P)2], contains a binuclear centrosymmetric RhIII dimer bridged by iodide anions, with respective Rh(...)Rh and I(...)I distances of 4.1437 (5) and 3.9144 (5) Å. The RhIII atom is in a distorted octa­hedral RhCI2O2P coordination with considerably different Rh—I distances to the bridging iodide anions. There are no classical hydrogen-bonding inter­actions observed for this complex.

Related literature

For the synthesis of similar Rh complexes and information on oxidative addition products, see: Basson et al. (1984 [triangle]; 1986a [triangle],b [triangle]; 1987 [triangle], 1992 [triangle]); Roodt & Steyn (2000 [triangle]); Smit et al. (1994 [triangle]); Steyn et al. (1992 [triangle]); Van Leewen & Roobeeck (1981 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1528-scheme1.jpg

Experimental

Crystal data

  • [Rh2(C6H5N2O2)2(C2H3O)2I2(C5H9O3P)2]
  • M r = 1116.14
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1528-efi1.jpg
  • a = 10.055 (2) Å
  • b = 16.944 (3) Å
  • c = 11.149 (2) Å
  • β = 112.75 (3)°
  • V = 1751.7 (7) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 2.86 mm−1
  • T = 293 K
  • 0.10 × 0.08 × 0.06 mm

Data collection

  • Bruker SMART CCD 1K diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2004 [triangle]) T min = 0.763, T max = 0.847
  • 12035 measured reflections
  • 4344 independent reflections
  • 3129 reflections with I > 2σ(I)
  • R int = 0.051

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033
  • wR(F 2) = 0.075
  • S = 0.95
  • 4344 reflections
  • 220 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.93 e Å−3
  • Δρmin = −0.50 e Å−3

Data collection: SMART (Bruker, 2004 [triangle]); cell refinement: SAINT-Plus (Bruker, 2004 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809043050/wm2267sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809043050/wm2267Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The University of the Witwatersrand (Professor D. Levendis and Dr D. G. Billing) is thanked for the use of its diffractometer. Financial assistance by the South African National Research Foundation (grant No. 2038915), the Central Research Fund of the University of the Free State, THRIP and Sasol is gratefully acknowledged. Opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Research Foundation.

supplementary crystallographic information

Comment

The title compound (Fig. 1) is the product of the oxidative addition of CH3I to [Rh(cupf)(CO){P(OCH2)3CCH3}] (cupf = cupferrate, (C6H5N2O2) (Basson et al., 1992) which forms part of a series of rhodium complexes used in the kinetic studies of these reactions (Basson et al., 1984; 1986b; Steyn et al., 1992; Smit et al., 1994; Roodt & Steyn, 2000).

In the structure, the RhIII metal centre is coordinated to two bridging iodide ligands, an acyl ligand, a cyclic phosphite ligand (P(OCH2)3CCH3) and an O,O'-bidentate cupferrate ligand. The coordination sphere around the metal is somewhat distorted from the octahedral geometry and a number of angles deviate significantly from the ideal (see Table 1). This is probably due to the small bite angle of 78.74 (19) ° formed by the cupferrate ligand and the metal centre. The angles, P—Rh—O2 of 172.54 (15) °, P—Rh—I of 96.21 (6)° and P—Rh—C1 of 87.2 (2) ° clearly support the visual impression of Fig. 1 showing the phosphite ligand bent outward to minimise steric interaction. The respective Rh—Rh and I—I distances were calculated as 4.1437 (5) and 3.9144 (5) Å. At 2.186 (2) Å the Rh—P bond lenght is short, compared to the 2.327 (4) Å of [Rh(cupf)(CO)(CH3)(I)(PPh3)] (Basson et al., 1987). This stems from the nature of phosphites to be excellent π-acceptors, causing stronger back donation from rhodium resulting in a shorter Rh—P bond. Also, the sterically small cyclic phosphite ligand allows for a closer fit in the coordination sphere. The Rh-I' distance (symmetry operator -x+1, -y, -z+1), the one trans to the acyl ligand, is significantly longer than the other Rh—I distance, demonstrating the large trans-influence of the acyl ligand. The formation of [Rh(cupf)(COCH3)(µ-I){P(OCH2)3CCH3}]2 can most probably be attributed to the minor steric requirements of both the cupferrate ligand with its narrow bite angle and even more importantly the small cone angle of the phosphite. No classical hydrogen-bonding interactions are observed in the title compound.

Experimental

The bicyclic phosphite ester, P(OCH2)3CCH3, and [Rh(C6H5N2O2)(CO)2] was prepared according to the respective methods reported previously (Van Leewen & Roobeeck, 1981; Basson et al., 1986a). Equimolar amounts of the cyclic phosphite was mixed with [Rh(C6H5N2O2)(CO)2] in acetone to form [Rh(C6H5N2O2)(CO)(P(OCH2)3CCH3)]. The reaction mixture was concentrated by evaporation after which a tenfold excess of CH3I was added. The container was covered with a perforated plastic film and left to stand for two days at 271 K after which brown-red single crystals of the title compound were isolated.

Refinement

The methylene, aromatic and methyl H atoms were placed in geometrically idealized positions (C—H = 0.93 – 0.98 Å) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) for methylene and aromatic protons and Uiso(H) = 1.5Ueq(C) for methyl protons respectively. The highest residual electron density was located 0.93 Å from I.

Figures

Fig. 1.
View of the dimeric compex present in the title compound. Probability level for displacement ellipsoids is 50%. Symmetry-related atoms are generated by the symmetry operator i) -x+1, -y, -z+1.

Crystal data

[Rh2(C6H5N2O2)2(C2H3O)2I2(C5H9O3P)2]F(000) = 1080
Mr = 1116.14Dx = 2.116 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 859 reflections
a = 10.055 (2) Åθ = 2.3–28.1°
b = 16.944 (3) ŵ = 2.86 mm1
c = 11.149 (2) ÅT = 293 K
β = 112.75 (3)°Cuboid, brown-red
V = 1751.7 (7) Å30.10 × 0.08 × 0.06 mm
Z = 2

Data collection

Bruker SMART CCD 1K diffractometer4344 independent reflections
Radiation source: fine-focus sealed tube3129 reflections with I > 2σ(I)
graphiteRint = 0.051
ω scansθmax = 28.3°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2004)h = −13→11
Tmin = 0.763, Tmax = 0.847k = −22→14
12035 measured reflectionsl = −12→14

Refinement

Refinement on F21 restraint
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.033w = 1/[σ2(Fo2) + (0.0354P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.075(Δ/σ)max < 0.001
S = 0.95Δρmax = 0.93 e Å3
4344 reflectionsΔρmin = −0.49 e Å3
220 parameters

Special details

Experimental. The intensity data were collected on a Bruker SMART CCD 1 K diffractometer using an exposure time of 20 s/frame. A total of 1315 frames were collected with a frame width of 0.3° covering up to θ = 28.29° with 99.8% completeness accomplished. The first 50 frames were recollected at the end of the data collection to check for decay; none was found.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C60.3530 (9)0.3279 (4)0.4556 (7)0.0389 (18)
C50.3479 (11)0.2939 (5)0.5784 (8)0.053 (2)
H1A0.43290.31020.65220.064*
H1B0.26370.3140.59080.064*
C40.4801 (10)0.2932 (5)0.4347 (9)0.050 (2)
H2A0.48490.31540.35630.06*
H2B0.5680.30730.50720.06*
C70.3688 (11)0.4178 (5)0.4674 (9)0.060 (3)
H5A0.45490.4310.54080.091*
H5B0.28670.43990.4790.091*
H5C0.37470.43890.38970.091*
O10.1009 (7)0.0872 (4)0.5202 (7)0.0698 (19)
C10.1039 (9)0.0605 (5)0.4219 (9)0.045 (2)
C2−0.0248 (11)0.0383 (7)0.3093 (10)0.074 (3)
H9A−0.0107−0.01290.2790.111*
H9B−0.04180.07630.24120.111*
H9C−0.10640.03660.33380.111*
I0.43362 (5)−0.00049 (3)0.64352 (4)0.03779 (16)
Rh0.29476 (7)0.04485 (4)0.40073 (6)0.03779 (16)
P0.3320 (2)0.17126 (11)0.43763 (19)0.0342 (4)
O20.2452 (6)−0.0699 (3)0.3412 (5)0.0382 (12)
N10.1775 (7)−0.0076 (4)0.1406 (6)0.0433 (16)
O30.2017 (6)0.0583 (3)0.2034 (5)0.0413 (13)
N20.1995 (7)−0.0702 (3)0.2114 (6)0.0366 (14)
C110.1793 (8)−0.1465 (4)0.1476 (7)0.0355 (17)
O60.4702 (6)0.2079 (3)0.4228 (6)0.0495 (14)
O40.2045 (6)0.2201 (3)0.3337 (5)0.0511 (15)
O50.3416 (7)0.2073 (3)0.5719 (5)0.0535 (16)
C150.2426 (11)−0.2819 (5)0.1644 (10)0.061 (3)
H0100.292−0.32490.21310.073*
C160.2521 (10)−0.2091 (5)0.2224 (8)0.050 (2)
H0110.3069−0.20260.31070.061*
C130.0867 (11)−0.2264 (6)−0.0368 (10)0.068 (3)
H0120.0298−0.2321−0.12480.082*
C120.0962 (10)−0.1545 (5)0.0197 (8)0.058 (2)
H0130.0463−0.1114−0.02880.07*
C140.1587 (11)−0.2907 (6)0.0322 (10)0.065 (3)
H0140.1518−0.3393−0.00830.078*
C30.2178 (10)0.3068 (4)0.3415 (9)0.051 (2)
H01A0.13460.32970.35220.061*
H01B0.22220.32750.2620.061*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C60.059 (5)0.025 (4)0.037 (4)0.005 (4)0.022 (4)0.005 (3)
C50.086 (7)0.039 (5)0.042 (5)0.001 (4)0.033 (5)−0.008 (4)
C40.064 (6)0.030 (4)0.064 (6)−0.013 (4)0.034 (5)−0.010 (4)
C70.097 (8)0.035 (5)0.056 (6)0.003 (5)0.036 (5)0.007 (4)
O10.070 (5)0.070 (5)0.085 (5)0.003 (4)0.047 (4)−0.006 (4)
C10.050 (5)0.040 (5)0.053 (5)0.010 (4)0.027 (4)0.004 (4)
C20.060 (7)0.091 (8)0.076 (7)0.000 (6)0.032 (6)0.008 (6)
I0.0466 (3)0.0360 (2)0.0325 (2)0.00276 (18)0.01725 (17)0.00362 (16)
Rh0.0466 (3)0.0360 (2)0.0325 (2)0.00276 (18)0.01725 (17)0.00362 (16)
P0.0421 (11)0.0291 (10)0.0324 (10)0.0012 (8)0.0155 (8)0.0015 (8)
O20.058 (3)0.024 (2)0.035 (3)−0.008 (2)0.021 (3)−0.002 (2)
N10.043 (4)0.051 (4)0.029 (3)0.001 (3)0.007 (3)0.005 (3)
O30.054 (3)0.024 (3)0.044 (3)0.001 (2)0.017 (3)0.007 (2)
N20.046 (4)0.028 (3)0.035 (3)−0.003 (3)0.015 (3)0.001 (3)
C110.040 (4)0.030 (4)0.038 (4)−0.004 (3)0.017 (3)−0.006 (3)
O60.051 (3)0.032 (3)0.076 (4)−0.004 (3)0.036 (3)−0.007 (3)
O40.056 (4)0.030 (3)0.052 (3)0.009 (3)0.004 (3)0.002 (3)
O50.100 (5)0.032 (3)0.038 (3)−0.001 (3)0.038 (3)0.000 (2)
C150.078 (7)0.039 (5)0.064 (6)0.004 (5)0.025 (5)−0.002 (4)
C160.067 (6)0.038 (4)0.041 (5)0.002 (4)0.016 (4)−0.006 (4)
C130.071 (7)0.066 (7)0.053 (6)−0.016 (5)0.008 (5)−0.022 (5)
C120.062 (6)0.055 (6)0.041 (5)0.002 (5)0.001 (4)−0.005 (4)
C140.067 (7)0.053 (6)0.079 (7)−0.021 (5)0.033 (6)−0.030 (5)
C30.072 (6)0.026 (4)0.054 (5)0.010 (4)0.022 (5)0.003 (4)

Geometric parameters (Å, °)

C6—C51.504 (10)Rh—P2.186 (2)
C6—C41.504 (11)Rh—Ii3.0511 (9)
C6—C31.502 (12)P—O61.588 (6)
C6—C71.533 (10)P—O51.585 (5)
C5—O51.468 (9)P—O41.589 (5)
C5—H1A0.97O2—N21.339 (7)
C5—H1B0.97N1—O31.290 (8)
C4—O61.451 (8)N1—N21.289 (8)
C4—H2A0.97N2—C111.451 (9)
C4—H2B0.97C11—C121.352 (10)
C7—H5A0.96C11—C161.374 (11)
C7—H5B0.96O4—C31.474 (9)
C7—H5C0.96C15—C161.379 (11)
O1—C11.196 (10)C15—C141.394 (13)
C1—C21.461 (13)C15—H0100.93
C1—Rh2.040 (8)C16—H0110.93
C2—H9A0.96C13—C141.368 (14)
C2—H9B0.96C13—C121.358 (12)
C2—H9C0.96C13—H0120.93
I—Rh2.6351 (8)C12—H0130.93
I—Rhi3.0511 (9)C14—H0140.93
Rh—O32.044 (5)C3—H01A0.97
Rh—O22.052 (5)C3—H01B0.97
C5—C6—C4108.7 (7)C1—Rh—Ii172.7 (2)
C5—C6—C3110.0 (7)O3—Rh—Ii85.36 (16)
C4—C6—C3108.7 (7)O2—Rh—Ii80.51 (15)
C5—C6—C7110.0 (6)P—Rh—Ii99.96 (6)
C4—C6—C7109.6 (7)I—Rh—Ii86.70 (2)
C3—C6—C7109.8 (6)O6—P—O5102.2 (3)
O5—C5—C6110.7 (6)O6—P—O4102.2 (3)
O5—C5—H1A109.5O5—P—O4103.0 (3)
C6—C5—H1A109.5O6—P—Rh117.2 (2)
O5—C5—H1B109.5O5—P—Rh120.0 (2)
C6—C5—H1B109.5O4—P—Rh110.0 (2)
H1A—C5—H1B108.1N2—O2—Rh107.0 (4)
O6—C4—C6111.8 (6)O3—N1—N2115.4 (6)
O6—C4—H2A109.3N1—O3—Rh113.5 (4)
C6—C4—H2A109.3N1—N2—O2124.3 (6)
O6—C4—H2B109.3N1—N2—C11118.3 (6)
C6—C4—H2B109.3O2—N2—C11117.3 (6)
H2A—C4—H2B107.9C12—C11—C16122.0 (7)
C6—C7—H5A109.5C12—C11—N2121.2 (7)
C6—C7—H5B109.5C16—C11—N2116.7 (7)
H5A—C7—H5B109.5C4—O6—P114.3 (5)
C6—C7—H5C109.5C3—O4—P116.6 (5)
H5A—C7—H5C109.5C5—O5—P114.7 (4)
H5B—C7—H5C109.5C16—C15—C14119.7 (9)
O1—C1—C2123.8 (9)C16—C15—H010120.2
O1—C1—Rh120.9 (7)C14—C15—H010120.2
C2—C1—Rh115.3 (7)C11—C16—C15118.8 (8)
C1—C2—H9A109.5C11—C16—H011120.6
C1—C2—H9B109.5C15—C16—H011120.6
H9A—C2—H9B109.5C14—C13—C12121.8 (9)
C1—C2—H9C109.5C14—C13—H012119.1
H9A—C2—H9C109.5C12—C13—H012119.1
H9B—C2—H9C109.5C11—C12—C13118.9 (9)
Rh—I—Rhi93.30 (2)C11—C12—H013120.6
C1—Rh—O392.9 (3)C13—C12—H013120.6
C1—Rh—O292.2 (3)C13—C14—C15118.8 (8)
O3—Rh—O278.74 (19)C13—C14—H014120.6
C1—Rh—P87.2 (2)C15—C14—H014120.6
O3—Rh—P93.85 (14)O4—C3—C6108.6 (6)
O2—Rh—P172.54 (15)O4—C3—H01A110
C1—Rh—I93.9 (2)C6—C3—H01A110
O3—Rh—I168.12 (14)O4—C3—H01B110
O2—Rh—I91.25 (14)C6—C3—H01B110
P—Rh—I96.21 (6)H01A—C3—H01B108.4

Symmetry codes: (i) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2267).

References

  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  • Basson, S. S., Leipoldt, J. G. & Nel, J. T. (1984). Inorg. Chim. Acta, 84, 167–169.
  • Basson, S. S., Leipoldt, J. G., Purcell, W. & Venter, J. A. (1992). Acta Cryst. C48, 171–173.
  • Basson, S. S., Leipoldt, J. G., Roodt, A. & Venter, J. A. (1986a). Inorg. Chim. Acta, 118, 45–46.
  • Basson, S. S., Leipoldt, J. G., Roodt, A. & Venter, J. A. (1987). Inorg. Chim. Acta, 128, 31–37.
  • Basson, S. S., Leipoldt, J. G., Roodt, A., Venter, J. A. & Van der Walt, T. J. (1986b). Inorg. Chim. Acta, 119, 35–38.
  • Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  • Bruker (2004). SADABS, SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  • Roodt, A. & Steyn, G. J. J. (2000). Res. Dev. Inorg. Chem. 2, 1–23.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Smit, D. M. C., Basson, S. S. & Steynberg, E. C. (1994). Rhodium Ex. 7–8, 12–14.
  • Steyn, G. J. J., Roodt, A. & Leipoldt, J. G. (1992). Inorg. Chem. 31, 3477–3481.
  • Van Leewen, P. W. N. M. & Roobeeck, C. F. (1981). Tetrahedron, 37, 1973–1975.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography