PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): o3098.
Published online 2009 November 14. doi:  10.1107/S1600536809047576
PMCID: PMC2971921

6-(4-Fluoro­pheneth­yl)-7-imino-3-phenyl-2,3,6,7-tetra­hydro-1,3-thia­zolo[4,5-d]pyrimidine-2-thione

Abstract

In the title compound, C19H15FN4S2, the mean plane of the thia­zolopyrimidine makes a dihedral angle of 77.6 (1)° with the attached phenyl ring. The crystal packing is stabilized by inter­molecular C—H(...)N hydrogen bonds and weak C—H—π stacking inter­actions.

Related literature

For the biological activity of thia­zolo[4,5-d]pyrimidine deriv­atives, see: Balkan et al. (2002 [triangle]); Bekhit et al. (2003 [triangle]); Danel et al. (1998 [triangle]); Fahmy et al. (2003 [triangle]). For the synthesis of thia­zolo [4,5-d]pyrimidines via tandem aza-Wittig and cyclization reactions of imino­phospho­rane and alkyl­amines, see: Liang et al. (2007 [triangle]). For C—H(...)π inter­actions, see: Janiak (2000 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o3098-scheme1.jpg

Experimental

Crystal data

  • C19H15FN4S2
  • M r = 382.47
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o3098-efi1.jpg
  • a = 8.6449 (13) Å
  • b = 12.3780 (19) Å
  • c = 16.546 (3) Å
  • β = 91.531 (3)°
  • V = 1769.9 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.32 mm−1
  • T = 298 K
  • 0.30 × 0.20 × 0.20 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001 [triangle]) T min = 0.910, T max = 0.939
  • 13207 measured reflections
  • 4047 independent reflections
  • 3442 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.119
  • S = 1.05
  • 4047 reflections
  • 238 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.31 e Å−3
  • Δρmin = −0.24 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809047576/jh2113sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809047576/jh2113Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We gratefully acknowledge the financial support of this work by the National Basic Research Program of China (2003CB114400) and the National Natural Science Foundation of China (No. 20372023).

supplementary crystallographic information

Comment

Thiazolo[4,5-d]pyrimidine derivatives, which can be considered as thia-analogues of the natural purine bases such as adenine and guanine, have acquired a growing importance as anticancer agents (Fahmy et al., 2003), antiviral agents used in the treatment of human cytomegalovirus (Bekhit et al., 2003), antitumour agents (Balkan et al.,2002) and antibacterial agents (Danel et al., 1998).

An important synthetic route of our previous reports for thiazolo [4,5-d]pyrimidines is the tandem aza-Wittig and cyclization reaction of iminophosphorane and alkylamines (Liang et al., 2007). Recently, we have developed a new cyclization process to synthesize novel thiazolo[4,5-d]pyrimidine derivatives. In this paper, we report the structure of the title compound, (I)(Fig. 1).

In the molecule, all bond lengths and angles are normal (Allen et al., 1987). The mean plane of the thiazolopyrimidine fragment makes dihedral angle of 77.58 (10)° with the attached phenyl ring fragment. In the crystal structure, intermolecular C—H···N hydrogen-bonding interactions stabilize the structure (Table 1). In addition, short intermolecular distances between the centroids of the C1···C6 ring, Cg3, and C19···H19A [C19—H19···Cg3i = 2.740 (3) Å; symmetry code: (i) 1 - x, 1 - y, -z] indicate the existence of C—H-π stacking interactions (Janiak, 2000), which stabilize the crystal packing (Fig. 2) together with hydrogen-bonding interactions.

Experimental

To a suspension of 5-cyano-4-ethoxymethyleneamino-3-phenyl-3H-thiazolin- 2-thione (0.87 g 5 mmol) in 15 mL dry acetonitrile was added all at once 0.5 g (3.6 mmol) 4-fluorophenylethylamine. After standing at room temperature for 1.5 h, then the solution concentrated under vacuum and the residue was recrystallized from dichloromethane to give the title compound (yield 72.8%). Colourless crystals of (I) suitable for X-ray structure analysis were grown from the mixture of dichloromethane and ethanol (v/v, 1:3).

Refinement

All H-atoms bound to carbon were refined using a riding model with d(C—H) = 0.93 Å, Uiso=1.2Ueq (C) for aromatic 0.98 Å, Uiso = 1.2Ueq (C) for CH and 0.96 Å, Uiso = 1.5Ueq (C) for CH3 atoms.

Figures

Fig. 1.
The structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.
Fig. 2.
Crystal Packing diagram of (I). Hydrogen bonds are shown as dashed lines.

Crystal data

C19H15FN4S2F(000) = 792
Mr = 382.47Dx = 1.435 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.6449 (13) ÅCell parameters from 5242 reflections
b = 12.3780 (19) Åθ = 2.5–27.9°
c = 16.546 (3) ŵ = 0.32 mm1
β = 91.531 (3)°T = 298 K
V = 1769.9 (5) Å3Block, colorless
Z = 40.30 × 0.20 × 0.20 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer4047 independent reflections
Radiation source: fine-focus sealed tube3442 reflections with I > 2σ(I)
graphiteRint = 0.023
[var phi] and ω scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 2001)h = −11→11
Tmin = 0.910, Tmax = 0.939k = −15→16
13207 measured reflectionsl = −20→21

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.05w = 1/[σ2(Fo2) + (0.063P)2 + 0.3948P] where P = (Fo2 + 2Fc2)/3
4047 reflections(Δ/σ)max = 0.001
238 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = −0.24 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.4958 (2)1.34258 (14)0.58804 (13)0.0535 (5)
C20.4537 (2)1.33892 (14)0.50835 (13)0.0542 (5)
H20.48631.39170.47260.065*
C30.3607 (2)1.25414 (15)0.48189 (11)0.0502 (4)
H30.33061.25030.42760.060*
C40.31153 (19)1.17484 (13)0.53462 (11)0.0429 (4)
C50.3617 (2)1.18055 (15)0.61453 (11)0.0504 (4)
H50.33351.12650.65030.060*
C60.4530 (2)1.26536 (16)0.64208 (12)0.0572 (5)
H60.48461.26970.69610.069*
C70.2083 (2)1.08369 (14)0.50454 (11)0.0482 (4)
H7A0.12031.11330.47450.058*
H7B0.16961.04390.55030.058*
C80.29661 (19)1.00780 (14)0.45073 (12)0.0467 (4)
H8A0.34501.04960.40870.056*
H8B0.37820.97320.48270.056*
C90.10871 (19)0.95138 (14)0.34270 (10)0.0422 (4)
C100.03504 (19)0.85689 (13)0.30865 (10)0.0411 (4)
C110.04789 (18)0.75959 (13)0.34560 (9)0.0379 (3)
C120.1989 (2)0.82329 (14)0.44484 (11)0.0458 (4)
H120.25670.81350.49250.055*
C13−0.0990 (2)0.70793 (14)0.23294 (10)0.0445 (4)
C14−0.02508 (18)0.56612 (13)0.33171 (10)0.0402 (4)
C150.0719 (3)0.49373 (17)0.29640 (13)0.0621 (5)
H150.13410.51460.25410.075*
C160.0753 (3)0.38912 (19)0.32496 (16)0.0780 (7)
H160.13980.33860.30140.094*
C17−0.0147 (3)0.35897 (17)0.38718 (18)0.0776 (8)
H17−0.01160.28810.40580.093*
C18−0.1101 (3)0.4326 (2)0.42259 (16)0.0739 (7)
H18−0.17110.41170.46530.089*
C19−0.1156 (2)0.53768 (16)0.39494 (12)0.0554 (5)
H19−0.17960.58820.41880.066*
N10.19862 (15)0.92398 (11)0.41267 (8)0.0411 (3)
N20.12708 (17)0.73932 (11)0.41615 (9)0.0459 (3)
N30.1072 (2)1.04959 (13)0.31970 (11)0.0605 (4)
H3A0.052 (3)1.0564 (19)0.2764 (15)0.073*
N4−0.02702 (16)0.67676 (11)0.30352 (8)0.0397 (3)
F10.58230 (17)1.42773 (10)0.61527 (9)0.0823 (4)
S1−0.07386 (6)0.84673 (4)0.21932 (3)0.05356 (16)
S2−0.19713 (7)0.63041 (4)0.16868 (3)0.06299 (18)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0557 (10)0.0390 (9)0.0653 (12)−0.0015 (7)−0.0051 (9)−0.0124 (8)
C20.0649 (11)0.0400 (9)0.0579 (12)−0.0030 (8)0.0053 (9)0.0022 (8)
C30.0616 (11)0.0468 (10)0.0418 (9)0.0013 (8)−0.0036 (8)−0.0013 (7)
C40.0455 (9)0.0374 (8)0.0457 (9)0.0022 (7)0.0017 (7)−0.0069 (7)
C50.0657 (11)0.0424 (9)0.0431 (10)0.0013 (8)0.0027 (8)−0.0003 (7)
C60.0738 (13)0.0516 (11)0.0456 (10)0.0017 (9)−0.0113 (9)−0.0088 (8)
C70.0463 (9)0.0461 (9)0.0523 (10)−0.0049 (7)0.0040 (8)−0.0077 (8)
C80.0384 (8)0.0437 (9)0.0576 (11)−0.0028 (7)−0.0038 (7)−0.0108 (8)
C90.0456 (9)0.0420 (9)0.0391 (8)−0.0044 (7)0.0005 (7)0.0010 (7)
C100.0478 (9)0.0415 (8)0.0337 (8)−0.0036 (7)−0.0048 (7)0.0028 (6)
C110.0403 (8)0.0388 (8)0.0344 (8)−0.0022 (6)−0.0019 (6)−0.0006 (6)
C120.0493 (9)0.0426 (9)0.0448 (10)0.0028 (7)−0.0131 (7)−0.0014 (7)
C130.0541 (10)0.0429 (9)0.0361 (8)−0.0027 (7)−0.0056 (7)0.0005 (7)
C140.0455 (8)0.0356 (8)0.0390 (8)−0.0024 (6)−0.0096 (7)−0.0015 (6)
C150.0763 (14)0.0584 (12)0.0516 (11)0.0159 (10)0.0021 (10)−0.0024 (9)
C160.1057 (19)0.0501 (12)0.0772 (16)0.0275 (12)−0.0187 (14)−0.0099 (11)
C170.0875 (16)0.0422 (11)0.101 (2)−0.0070 (11)−0.0404 (15)0.0170 (11)
C180.0622 (12)0.0699 (15)0.0891 (17)−0.0130 (11)−0.0077 (11)0.0346 (13)
C190.0493 (10)0.0549 (11)0.0621 (12)0.0020 (8)0.0031 (8)0.0128 (9)
N10.0389 (7)0.0388 (7)0.0453 (8)−0.0018 (5)−0.0053 (6)−0.0052 (6)
N20.0560 (8)0.0401 (7)0.0409 (8)−0.0006 (6)−0.0147 (6)0.0024 (6)
N30.0840 (12)0.0420 (8)0.0547 (10)−0.0113 (8)−0.0114 (9)0.0082 (7)
N40.0479 (7)0.0373 (7)0.0335 (7)−0.0034 (5)−0.0060 (5)0.0010 (5)
F10.0964 (10)0.0541 (7)0.0954 (10)−0.0209 (7)−0.0147 (8)−0.0206 (7)
S10.0767 (3)0.0453 (3)0.0377 (3)−0.0082 (2)−0.0170 (2)0.00820 (18)
S20.0860 (4)0.0531 (3)0.0483 (3)−0.0078 (2)−0.0276 (3)−0.0050 (2)

Geometric parameters (Å, °)

C1—C21.359 (3)C10—S11.7356 (16)
C1—F11.362 (2)C11—N21.361 (2)
C1—C61.367 (3)C11—N41.390 (2)
C2—C31.386 (3)C12—N21.294 (2)
C2—H20.9300C12—N11.355 (2)
C3—C41.387 (3)C12—H120.9300
C3—H30.9300C13—N41.364 (2)
C4—C51.382 (2)C13—S21.6501 (17)
C4—C71.515 (2)C13—S11.7472 (18)
C5—C61.384 (3)C14—C151.369 (3)
C5—H50.9300C14—C191.369 (3)
C6—H60.9300C14—N41.447 (2)
C7—C81.515 (2)C15—C161.378 (3)
C7—H7A0.9700C15—H150.9300
C7—H7B0.9700C16—C171.359 (4)
C8—N11.470 (2)C16—H160.9300
C8—H8A0.9700C17—C181.371 (4)
C8—H8B0.9700C17—H170.9300
C9—N31.274 (2)C18—C191.379 (3)
C9—N11.418 (2)C18—H180.9300
C9—C101.439 (2)C19—H190.9300
C10—C111.354 (2)N3—H3A0.86 (2)
C2—C1—F1118.50 (18)C10—C11—N2125.78 (15)
C2—C1—C6122.77 (17)C10—C11—N4113.49 (14)
F1—C1—C6118.72 (18)N2—C11—N4120.72 (14)
C1—C2—C3118.01 (18)N2—C12—N1126.76 (15)
C1—C2—H2121.0N2—C12—H12116.6
C3—C2—H2121.0N1—C12—H12116.6
C2—C3—C4121.47 (17)N4—C13—S2127.02 (13)
C2—C3—H3119.3N4—C13—S1109.46 (12)
C4—C3—H3119.3S2—C13—S1123.52 (10)
C5—C4—C3118.15 (16)C15—C14—C19121.81 (18)
C5—C4—C7121.30 (16)C15—C14—N4118.95 (17)
C3—C4—C7120.54 (16)C19—C14—N4119.19 (15)
C4—C5—C6121.04 (18)C14—C15—C16118.4 (2)
C4—C5—H5119.5C14—C15—H15120.8
C6—C5—H5119.5C16—C15—H15120.8
C1—C6—C5118.50 (18)C17—C16—C15120.7 (2)
C1—C6—H6120.7C17—C16—H16119.7
C5—C6—H6120.7C15—C16—H16119.7
C4—C7—C8110.67 (14)C16—C17—C18120.3 (2)
C4—C7—H7A109.5C16—C17—H17119.9
C8—C7—H7A109.5C18—C17—H17119.9
C4—C7—H7B109.5C17—C18—C19120.1 (2)
C8—C7—H7B109.5C17—C18—H18120.0
H7A—C7—H7B108.1C19—C18—H18120.0
N1—C8—C7113.30 (14)C14—C19—C18118.7 (2)
N1—C8—H8A108.9C14—C19—H19120.6
C7—C8—H8A108.9C18—C19—H19120.6
N1—C8—H8B108.9C12—N1—C9122.40 (13)
C7—C8—H8B108.9C12—N1—C8119.05 (14)
H8A—C8—H8B107.7C9—N1—C8118.54 (14)
N3—C9—N1118.24 (15)C12—N2—C11113.08 (14)
N3—C9—C10131.12 (16)C9—N3—H3A110.2 (16)
N1—C9—C10110.63 (14)C13—N4—C11114.58 (13)
C11—C10—C9121.06 (15)C13—N4—C14123.01 (13)
C11—C10—S1110.87 (12)C11—N4—C14122.39 (12)
C9—C10—S1128.06 (12)C10—S1—C1391.60 (8)
F1—C1—C2—C3−177.55 (17)C17—C18—C19—C140.3 (3)
C6—C1—C2—C31.4 (3)N2—C12—N1—C93.5 (3)
C1—C2—C3—C4−0.1 (3)N2—C12—N1—C8−175.59 (17)
C2—C3—C4—C5−1.9 (3)N3—C9—N1—C12175.35 (18)
C2—C3—C4—C7179.23 (16)C10—C9—N1—C12−5.8 (2)
C3—C4—C5—C62.7 (3)N3—C9—N1—C8−5.6 (2)
C7—C4—C5—C6−178.48 (17)C10—C9—N1—C8173.26 (14)
C2—C1—C6—C5−0.7 (3)C7—C8—N1—C12−100.26 (19)
F1—C1—C6—C5178.28 (18)C7—C8—N1—C980.6 (2)
C4—C5—C6—C1−1.4 (3)N1—C12—N2—C111.3 (3)
C5—C4—C7—C8−109.01 (19)C10—C11—N2—C12−3.2 (3)
C3—C4—C7—C869.8 (2)N4—C11—N2—C12175.53 (15)
C4—C7—C8—N1−173.93 (15)S2—C13—N4—C11179.73 (13)
N3—C9—C10—C11−177.3 (2)S1—C13—N4—C11−0.73 (19)
N1—C9—C10—C114.0 (2)S2—C13—N4—C141.2 (3)
N3—C9—C10—S14.0 (3)S1—C13—N4—C14−179.28 (13)
N1—C9—C10—S1−174.59 (13)C10—C11—N4—C130.2 (2)
C9—C10—C11—N20.3 (3)N2—C11—N4—C13−178.63 (15)
S1—C10—C11—N2179.18 (14)C10—C11—N4—C14178.81 (15)
C9—C10—C11—N4−178.47 (15)N2—C11—N4—C14−0.1 (2)
S1—C10—C11—N40.37 (19)C15—C14—N4—C1376.3 (2)
C19—C14—C15—C161.2 (3)C19—C14—N4—C13−106.2 (2)
N4—C14—C15—C16178.58 (18)C15—C14—N4—C11−102.1 (2)
C14—C15—C16—C17−0.5 (4)C19—C14—N4—C1175.4 (2)
C15—C16—C17—C18−0.2 (4)C11—C10—S1—C13−0.66 (14)
C16—C17—C18—C190.3 (4)C9—C10—S1—C13178.08 (17)
C15—C14—C19—C18−1.1 (3)N4—C13—S1—C100.78 (14)
N4—C14—C19—C18−178.46 (17)S2—C13—S1—C10−179.66 (13)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C15—H15···N3i0.932.613.486 (3)156
C19—H19···Cg3ii0.932.743.637 (2)161

Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2; (ii) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2113).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Balkan, A., Goren, Z. & Urgan, H. (2002). Arzneim. Forsch. 52, 462–467. [PubMed]
  • Bekhit, A. A., Fahmy, H. T. Y., Rostom, S. A. F. & Baraka, A. M. (2003). Eur. J. Med. Chem. 38, 27–34.
  • Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Danel, K., Pedersen, E. B. & Nielsen, C. (1998). J. Med. Chem. 41, 191–198. [PubMed]
  • Fahmy, H. T. Y., Rostom, S. A. F., Saudi, M. N. & Zjawiony, J. K. (2003). Arch. Pharm. Pharm. Med. Chem. 336, 216–225.
  • Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.
  • Liang, Y., Fang, S., Mo, W. Y. & He, H. W. (2007). J. Fluorine Chem. 128, 879–884.
  • Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography