PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): m1664.
Published online 2009 November 25. doi:  10.1107/S1600536809049034
PMCID: PMC2971918

Bis(2,2′-bipyridine-κ2 N,N′)chloridocobalt(II) perchlorate

Abstract

In the cation of the title compound, [CoCl(C10H8N2)2]ClO4, the CoII atom displays a distorted trigonal-bipyramidal coordination geometry. The two pyridine rings in each 2,2′-bipyridine ligand form dihedral angles of 10.75 (12) and 4.28 (13)°. The crystal packing is stabilized by inter­ionic C—H(...)O hydrogen bonds, C—H(...)π inter­actions and aromatic π–π stacking inter­actions, with centroid–centroid distances of 3.616 (7) Å.

Related literature

For the use of 2,2′-bipyridine in coordination chemistry, see: Ruiz-Perez et al. (2002 [triangle]). For the structure of the corresponding copper(II) compound, see: Harrison et al. (1981 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1664-scheme1.jpg

Experimental

Crystal data

  • [CoCl(C10H8N2)2]ClO4
  • M r = 506.20
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1664-efi1.jpg
  • a = 10.7725 (12) Å
  • b = 12.2696 (14) Å
  • c = 16.333 (2) Å
  • β = 105.361 (2)°
  • V = 2081.7 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.12 mm−1
  • T = 298 K
  • 0.40 × 0.21 × 0.19 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.664, T max = 0.816
  • 10284 measured reflections
  • 3661 independent reflections
  • 2458 reflections with I > 2σ(I)
  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.124
  • S = 1.06
  • 3661 reflections
  • 280 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.50 e Å−3
  • Δρmin = −0.39 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809049034/rz2393sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809049034/rz2393Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We acknowledge the financial support of the Science Foundation of Shandong.

supplementary crystallographic information

Comment

Hydrogen bonding has been intensively investigated in organic crystalline solids, but is relatively unexplored in coordination complexes. In order to search the new functional hydrogen-bonded metal coordination network structures, chelating ligands such as 2,2'-bipyridine (Ruiz-Perez et al., 2002) were selected for study because they can simultaneously coordinate with the metal ions and provide potential intermolecular interaction sites.

In title compound (Fig. 1), the cobalt(II) atom has a distorted trigonal bipyramidal coordination geometry provided by one chloride anion and four nitrogen atoms from the two chelating 2, 2'-bipyridine molecules. The equatorial plane is defined by the N2, N4 and Cl1 atoms, and the sum of the N—Co—N and N—Co—Cl angles is 360.0 (3)°. The apical positions are occupied by the N1 and N3 atoms [N1—Co1—N3 = 174.58 (14)°]. The Co—N bond lenghts (Table 1) lie in the range 1.992 (3)-2.138 (3) Å. The N1/C1–C5, N2/C6–C10 and N3/C11–C15, N4/C16–C20 pyridine rings form dihedral angles of 10.75 (12) and 4.28 (13)°, respectively. The structure is similar to that reported previously for the corresponding copper(II) compound (Harrison et al., 1981). In the crystal structure, cations and anions interact through C—H···O hydrogen bonds (Table 2) to form a three-dimensional network. The structure is further stabilized by a C—H···π interaction (C11—H11···Cg1, 2.85 Å; C11—H11—Cg1, 155°; Cg1 is the centroid of the N2/C6–C10 pyridine ring) and by aromatic π–π stacking interactions involving centrosymmetrically related N3/C11–C15 pyridine rings, with a centroid-to-centroid distance of 3.616 (7) Å.

Experimental

To a solution of Co(ClO4)2.6H2O and CoCl2.6H2O (1:1 molar ratio) in ethanol (10 mL) was added a solution of 2,2'-bipyridine (0.1562 g, 1 mmol) in ethanol (20 mL) and the resulting green solution was stirred for 8h at 333 K. The mixture was then filtered and the filtrate was allowed to stand at room temperature for one week to give well shaped green crystals suitable for X-ray analysis (yield 61%). Analysis calculated for C20H16Cl2N4O4Co: C 47.45, H, 3.19; N 11.07%; found: C 47.49, H 3.26, N, 11.12%.

Refinement

All H atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title compound with 30% displacement ellipsoids.

Crystal data

[CoCl(C10H8N2)2]ClO4F(000) = 1028
Mr = 506.20Dx = 1.615 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2895 reflections
a = 10.7725 (12) Åθ = 2.6–25.8°
b = 12.2696 (14) ŵ = 1.12 mm1
c = 16.333 (2) ÅT = 298 K
β = 105.361 (2)°Block, green
V = 2081.7 (4) Å30.40 × 0.21 × 0.19 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer3661 independent reflections
Radiation source: fine-focus sealed tube2458 reflections with I > 2σ(I)
graphiteRint = 0.029
[var phi] and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −12→12
Tmin = 0.664, Tmax = 0.816k = −14→14
10284 measured reflectionsl = −12→19

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.0432P)2 + 2.7771P] where P = (Fo2 + 2Fc2)/3
3661 reflections(Δ/σ)max = 0.001
280 parametersΔρmax = 0.50 e Å3
1 restraintΔρmin = −0.39 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Co10.73259 (5)0.95539 (4)0.86267 (3)0.04181 (18)
N10.7739 (3)0.9517 (3)0.7508 (2)0.0531 (9)
Cl10.72296 (14)1.13977 (10)0.86111 (8)0.0720 (4)
Cl20.27386 (13)0.89418 (10)0.63357 (7)0.0653 (3)
N20.9032 (3)0.8579 (3)0.8932 (2)0.0504 (9)
N30.6929 (3)0.9438 (3)0.9747 (2)0.0514 (9)
N40.6035 (3)0.8263 (3)0.8383 (2)0.0527 (9)
O10.1665 (5)0.9455 (4)0.5784 (3)0.140 (2)
O20.2326 (4)0.8325 (4)0.6957 (2)0.1056 (14)
O30.3357 (5)0.8273 (4)0.5887 (3)0.143 (2)
O40.3567 (6)0.9733 (4)0.6800 (4)0.163 (2)
C10.7066 (5)1.0065 (4)0.6821 (3)0.0656 (13)
H10.63291.04400.68510.079*
C20.7427 (5)1.0089 (4)0.6077 (3)0.0682 (14)
H20.69391.04680.56090.082*
C30.8520 (5)0.9544 (4)0.6034 (3)0.0691 (14)
H30.87900.95620.55380.083*
C40.9217 (5)0.8970 (4)0.6730 (3)0.0617 (12)
H40.99550.85930.67080.074*
C50.8802 (4)0.8963 (3)0.7466 (3)0.0485 (10)
C60.9463 (4)0.8365 (3)0.8244 (3)0.0472 (10)
C71.0428 (5)0.7611 (4)0.8278 (3)0.0658 (13)
H71.07270.74730.78040.079*
C81.0942 (5)0.7065 (4)0.9037 (4)0.0742 (14)
H81.15890.65520.90720.089*
C91.0505 (5)0.7275 (4)0.9728 (3)0.0674 (13)
H91.08400.69091.02370.081*
C100.9553 (4)0.8044 (4)0.9653 (3)0.0624 (12)
H100.92590.81981.01270.075*
C110.7445 (5)1.0087 (4)1.0417 (3)0.0623 (12)
H110.80731.05881.03760.075*
C120.7073 (5)1.0034 (5)1.1160 (3)0.0689 (13)
H120.74471.04871.16150.083*
C130.6132 (5)0.9294 (4)1.1214 (3)0.0711 (15)
H130.58580.92451.17070.085*
C140.5602 (5)0.8629 (4)1.0530 (3)0.0679 (14)
H140.49590.81351.05570.082*
C150.6028 (4)0.8700 (4)0.9804 (3)0.0526 (11)
C160.5549 (4)0.8017 (3)0.9042 (3)0.0526 (11)
C170.4680 (5)0.7166 (4)0.8981 (4)0.0720 (14)
H170.43440.69990.94350.086*
C180.4323 (5)0.6573 (4)0.8242 (4)0.0835 (17)
H180.37340.60060.81930.100*
C190.4824 (5)0.6808 (4)0.7588 (4)0.0751 (15)
H190.45960.64040.70890.090*
C200.5678 (5)0.7659 (4)0.7675 (3)0.0632 (12)
H200.60220.78230.72240.076*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Co10.0476 (3)0.0455 (3)0.0378 (3)−0.0002 (3)0.0210 (2)0.0038 (2)
N10.056 (2)0.058 (2)0.049 (2)0.0005 (19)0.0199 (17)0.0079 (18)
Cl10.1044 (10)0.0515 (6)0.0683 (8)−0.0031 (7)0.0372 (7)0.0040 (6)
Cl20.0797 (8)0.0674 (8)0.0556 (7)0.0164 (7)0.0302 (6)0.0039 (6)
N20.050 (2)0.057 (2)0.048 (2)−0.0015 (17)0.0184 (17)0.0080 (17)
N30.054 (2)0.053 (2)0.052 (2)0.0006 (18)0.0244 (17)0.0030 (17)
N40.050 (2)0.055 (2)0.056 (2)0.0011 (17)0.0181 (17)0.0032 (18)
O10.138 (4)0.217 (6)0.072 (3)0.099 (4)0.039 (3)0.055 (3)
O20.107 (3)0.131 (4)0.093 (3)0.021 (3)0.051 (2)0.047 (3)
O30.178 (5)0.176 (5)0.095 (3)0.094 (4)0.071 (3)−0.006 (3)
O40.191 (6)0.107 (4)0.184 (6)−0.048 (4)0.034 (5)−0.021 (4)
C10.073 (3)0.072 (3)0.052 (3)0.011 (3)0.018 (2)0.010 (2)
C20.086 (4)0.071 (3)0.045 (3)−0.004 (3)0.013 (3)0.007 (2)
C30.094 (4)0.073 (3)0.047 (3)−0.013 (3)0.031 (3)−0.001 (3)
C40.073 (3)0.066 (3)0.055 (3)−0.006 (3)0.032 (2)−0.009 (2)
C50.053 (3)0.046 (2)0.051 (2)−0.012 (2)0.022 (2)−0.005 (2)
C60.049 (2)0.045 (2)0.051 (2)−0.007 (2)0.020 (2)−0.0030 (19)
C70.070 (3)0.061 (3)0.071 (3)0.006 (3)0.026 (3)−0.008 (3)
C80.068 (3)0.061 (3)0.090 (4)0.015 (3)0.014 (3)−0.001 (3)
C90.067 (3)0.064 (3)0.070 (3)0.007 (3)0.016 (3)0.011 (3)
C100.063 (3)0.071 (3)0.055 (3)0.001 (3)0.020 (2)0.012 (2)
C110.069 (3)0.065 (3)0.057 (3)0.000 (2)0.023 (2)−0.001 (2)
C120.085 (4)0.075 (3)0.051 (3)0.014 (3)0.026 (3)0.004 (2)
C130.091 (4)0.080 (4)0.055 (3)0.019 (3)0.042 (3)0.016 (3)
C140.072 (3)0.073 (3)0.071 (3)0.008 (3)0.040 (3)0.020 (3)
C150.053 (3)0.053 (3)0.058 (3)0.012 (2)0.025 (2)0.016 (2)
C160.048 (3)0.047 (2)0.067 (3)0.008 (2)0.022 (2)0.015 (2)
C170.073 (3)0.060 (3)0.090 (4)−0.004 (3)0.034 (3)0.016 (3)
C180.077 (4)0.059 (3)0.109 (5)−0.019 (3)0.016 (3)0.007 (3)
C190.079 (4)0.055 (3)0.084 (4)−0.006 (3)0.007 (3)−0.001 (3)
C200.065 (3)0.063 (3)0.060 (3)−0.002 (2)0.015 (2)−0.001 (2)

Geometric parameters (Å, °)

Co1—N31.992 (3)C6—C71.381 (6)
Co1—N11.992 (3)C7—C81.388 (7)
Co1—N42.075 (4)C7—H70.9300
Co1—N22.138 (3)C8—C91.358 (7)
Co1—Cl12.2645 (13)C8—H80.9300
N1—C11.344 (6)C9—C101.375 (6)
N1—C51.349 (5)C9—H90.9300
Cl2—O31.383 (4)C10—H100.9300
Cl2—O41.399 (5)C11—C121.375 (6)
Cl2—O11.412 (4)C11—H110.9300
Cl2—O21.428 (4)C12—C131.381 (7)
N2—C101.335 (5)C12—H120.9300
N2—C61.351 (5)C13—C141.379 (7)
N3—C151.348 (5)C13—H130.9300
N3—C111.349 (6)C14—C151.382 (6)
N4—C201.342 (5)C14—H140.9300
N4—C161.350 (5)C15—C161.475 (6)
C1—C21.370 (6)C16—C171.388 (6)
C1—H10.9300C17—C181.374 (7)
C2—C31.372 (7)C17—H170.9300
C2—H20.9300C18—C191.351 (7)
C3—C41.379 (7)C18—H180.9300
C3—H30.9300C19—C201.373 (6)
C4—C51.388 (6)C19—H190.9300
C4—H40.9300C20—H200.9300
C5—C61.476 (6)
N3—Co1—N1174.58 (14)N2—C6—C5115.2 (4)
N3—Co1—N479.94 (14)C7—C6—C5123.6 (4)
N1—Co1—N496.21 (14)C6—C7—C8118.5 (5)
N3—Co1—N297.25 (13)C6—C7—H7120.8
N1—Co1—N279.29 (13)C8—C7—H7120.8
N4—Co1—N296.25 (14)C9—C8—C7120.5 (5)
N3—Co1—Cl193.53 (10)C9—C8—H8119.8
N1—Co1—Cl191.89 (11)C7—C8—H8119.8
N4—Co1—Cl1137.20 (10)C8—C9—C10118.0 (5)
N2—Co1—Cl1126.54 (10)C8—C9—H9121.0
C1—N1—C5119.2 (4)C10—C9—H9121.0
C1—N1—Co1123.5 (3)N2—C10—C9123.1 (4)
C5—N1—Co1117.2 (3)N2—C10—H10118.5
O3—Cl2—O4111.8 (4)C9—C10—H10118.5
O3—Cl2—O1110.8 (3)N3—C11—C12122.2 (5)
O4—Cl2—O1109.5 (4)N3—C11—H11118.9
O3—Cl2—O2110.3 (3)C12—C11—H11118.9
O4—Cl2—O2104.9 (3)C11—C12—C13118.6 (5)
O1—Cl2—O2109.4 (3)C11—C12—H12120.7
C10—N2—C6118.8 (4)C13—C12—H12120.7
C10—N2—Co1128.0 (3)C14—C13—C12119.4 (4)
C6—N2—Co1112.2 (3)C14—C13—H13120.3
C15—N3—C11119.4 (4)C12—C13—H13120.3
C15—N3—Co1116.4 (3)C13—C14—C15119.8 (5)
C11—N3—Co1124.1 (3)C13—C14—H14120.1
C20—N4—C16118.7 (4)C15—C14—H14120.1
C20—N4—Co1127.7 (3)N3—C15—C14120.6 (4)
C16—N4—Co1113.5 (3)N3—C15—C16114.8 (4)
N1—C1—C2122.2 (5)C14—C15—C16124.5 (4)
N1—C1—H1118.9N4—C16—C17120.5 (5)
C2—C1—H1118.9N4—C16—C15115.0 (4)
C1—C2—C3119.0 (5)C17—C16—C15124.5 (4)
C1—C2—H2120.5C18—C17—C16119.3 (5)
C3—C2—H2120.5C18—C17—H17120.4
C2—C3—C4119.5 (4)C16—C17—H17120.4
C2—C3—H3120.3C19—C18—C17120.2 (5)
C4—C3—H3120.3C19—C18—H18119.9
C3—C4—C5119.2 (5)C17—C18—H18119.9
C3—C4—H4120.4C18—C19—C20118.5 (5)
C5—C4—H4120.4C18—C19—H19120.7
N1—C5—C4120.8 (4)C20—C19—H19120.7
N1—C5—C6115.4 (3)N4—C20—C19122.7 (5)
C4—C5—C6123.8 (4)N4—C20—H20118.6
N2—C6—C7121.2 (4)C19—C20—H20118.6

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.932.413.170 (6)139
C4—H4···O2ii0.932.503.365 (6)155
C10—H10···O3iii0.932.533.116 (6)122
C11—H11···Cg1iv0.932.853.709 (6)155

Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) x+1, y, z; (iii) x+1/2, −y+3/2, z+1/2; (iv) −x+2, −y+2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2393).

References

  • Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Harrison, W. D., Kennedy, D. M., Ray, N. J., Sheahan, R. & Hathaway, B. J. (1981). J. Chem. Soc. Dalton Trans. pp. 1556–1565.
  • Ruiz-Perez, C., Luis, P. A. L., Lloret, F. & Julve, M. (2002). Inorg. Chim. Acta, 336, 131–136.
  • Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography