PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): o3111.
Published online 2009 November 18. doi:  10.1107/S1600536809048247
PMCID: PMC2971916

3-(2-Amino-1,3-thia­zol-4-yl)-6-chloro-2H-chromen-2-one

Abstract

The title compound, C12H7ClN2O2S, crystallizes with two mol­ecules in the asymmetric unit. The mol­ecular conformation is roughly planar for both these mol­ecules with maximum deviations of 0.177 (3) and 0.076 (4) Å from their respective mean planes. In the crystal, strong N—H(...)N and weak but highly directional C—H(...)O hydrogen bonds provide the links between the mol­ecules. The structure is further stabilised by aromatic π–π stacking inter­actions with centroid–centroid distances in the range 3.650 (3)–3.960 (3) Å.

Related literature

For applications of coumarin compounds in photochemistry, see: Vishnumurthy et al. (2001 [triangle]). For their roles as dyes, laser dyes and in probing ultrafast solvation effects see: Morris & Rusell (1971 [triangle]); Khalfan et al., (1987 [triangle]); Maroncelli & Fleming (1987 [triangle]). For graph set motifs, see: Bernstein et al. (1995 [triangle]). For the synthesis of the title compound, see: Venugopal et al. (2004 [triangle]). For related structures see: Vishnumurthy et al. (2001 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o3111-scheme1.jpg

Experimental

Crystal data

  • C12H7ClN2O2S
  • M r = 278.72
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o3111-efi1.jpg
  • a = 12.494 (8) Å
  • b = 7.350 (5) Å
  • c = 25.013 (15) Å
  • β = 98.156 (12)°
  • V = 2274 (3) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.51 mm−1
  • T = 290 K
  • 0.20 × 0.10 × 0.02 mm

Data collection

  • Bruker SMART CCD area detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick (1996 [triangle]) T min = 0.885, T max = 0.990
  • 16106 measured reflections
  • 4165 independent reflections
  • 2561 reflections with I > 2σ(I)
  • R int = 0.054

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054
  • wR(F 2) = 0.118
  • S = 1.01
  • 4165 reflections
  • 325 parameters
  • H-atom parameters constrained
  • Δρmax = 0.28 e Å−3
  • Δρmin = −0.27 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and CAMERON (Watkin et al., 1993 [triangle]); software used to prepare material for publication: PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809048247/sj2672sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809048247/sj2672Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Department of Science and Technology, India, for the data collection at the CCD facility set up under the IRHPA–DST program.

supplementary crystallographic information

Comment

Coumarins are an important class of organic compounds and have been extensively studied.Such molecules of vast structural diversity find useful applications in several areas of synthetic chemistry, medicinal chemistry and photochemistry. The formation of [2 + 2] cycloaddition products upon irradiation (Vishnumurthy et al.,2001) of coumarin and its derivatives has contributed immensely to the area of solid-state chemistry. Several substituted coumarin derivatives find applications in the dye industry (Morris & Rusell, 1971) and in the area of LASER dyes (Khalfan et al., 1987) based on the fact that such compounds show state dependent variations in their static dipole moments. These have also been used to probe ultrafast solvation effects (Maroncelli & Fleming, 1987). The geometry and molecular packing patterns of several coumarin derivatives have been studied to evaluate the features of non-covalent interactions (Vishnumurthy et al., 2001). Against this background, and to obtain more information on such compounds the solid-state structure of the title compound is reported here.

In the title compound, we have a chloro substituted coumarin ring crystallizing in monoclinic centrosymmetric space group with two unique molecules in the asymmetric unit [(A) and (B)]. Both the molecules are essentially planar with the dihedral angles between the least squares planes passing through the coumarin ring and thiazoyl ring being 9.1 (1) and 4.9 (1)Å in A and B respectively. The largest displacement is observed for the atom C11 being -0.020 (3)Å for molecule A and atom C13 being -0.041 (4)Å for molecule B from the weighted least squares planes through C1/O2 and C13/O3 respectively. Aromatic π···π stacking interactions are found with distances Cg2···Cg6 = 3.942 (3) Å, Cg2···Cg7 = 3.650 (3) Å, and Cg3···Cg7 = 3.960 (3)Å between the molecules A and B. Cg2, Cg3, Cg6 and Cg7 are the centroids of the six-membered rings O2/C8, C4/C9, O3/C20 and C16/C21 (Figure 1). Molecules A are linked by alternating C—H···O interactions (involving H7 and O2) forming R22(8) ring dimers [Bernstein et al., 1995]. N—H···N hydrogen bonds form hetero-dimeric motifs linking A and B molecules. (Figure 2, Table 1). Thus the supramolecular assembly is built up by an interplay of strong N—H···N, weak C—H···O and π···π van der Waals interactions. A short Cl···S contact of distance 3.532 (2)Å ( symmetry code: x, -y+1+1/2, z-1/2) is also present in the crystal lattice

Experimental

The compounds were synthesized in accordance with the procedure reported in the literature (Venugopal et al., 2004). Single crystals of the compound were grown from chloroform:methanol (1:1) by slow evaporation at 275–277 K.

Refinement

All H-atoms were positioned geometrically and refined using a riding model with d(C-H) = 0.93Å, Uiso=1.2Ueq (C) for aromatic and 0.86Å, Uiso = 1.2Ueq (N) for the NH atoms.

Figures

Fig. 1.
: The structure of the title compound drawn with 50% ellipsoidal probability showing the two molecules in the asymmetric unit (Molecules A and B). The dotted lines indicate inter-molecular centroid···centroid interactions. Cg2, ...
Fig. 2.
: Packing of the title compound highlighting the C—H···O dimers and N—H···N heterodimeric units. Only participating H atoms have been shown, others have been omitted for clarity.

Crystal data

C12H7ClN2O2SF(000) = 1136
Mr = 278.72Dx = 1.628 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 845 reflections
a = 12.494 (8) Åθ = 1.6–25.8°
b = 7.350 (5) ŵ = 0.51 mm1
c = 25.013 (15) ÅT = 290 K
β = 98.156 (12)°Plate, yellow
V = 2274 (3) Å30.20 × 0.10 × 0.02 mm
Z = 8

Data collection

Bruker SMART CCD area detector diffractometer4165 independent reflections
Radiation source: fine-focus sealed tube2561 reflections with I > 2σ(I)
graphiteRint = 0.054
[var phi] and ω scansθmax = 25.4°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Sheldrick (1996)h = −15→15
Tmin = 0.885, Tmax = 0.990k = −8→8
16106 measured reflectionsl = −29→30

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.01w = 1/[σ2(Fo2) + (0.0493P)2] where P = (Fo2 + 2Fc2)/3
4165 reflections(Δ/σ)max < 0.001
325 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = −0.27 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.23200 (7)0.90698 (12)0.22923 (3)0.0415 (2)
S20.28374 (8)0.49152 (15)0.13304 (4)0.0563 (3)
Cl10.07808 (7)0.52598 (14)0.60106 (3)0.0559 (3)
Cl20.12399 (7)0.11642 (12)0.50115 (3)0.0533 (3)
O10.44938 (19)0.7077 (4)0.37710 (10)0.0724 (8)
O20.39831 (17)0.6431 (3)0.45510 (9)0.0475 (6)
O30.45453 (17)0.2376 (3)0.36083 (9)0.0485 (6)
O40.50908 (19)0.3322 (4)0.28593 (10)0.0684 (8)
N10.12697 (19)0.8694 (3)0.31039 (10)0.0338 (6)
N20.0231 (3)0.9983 (5)0.23312 (13)0.0502 (9)
N30.1780 (2)0.4062 (3)0.21072 (10)0.0365 (6)
N40.0660 (3)0.4837 (5)0.13067 (14)0.0530 (9)
C10.3740 (3)0.6983 (5)0.40182 (14)0.0436 (9)
C20.2602 (2)0.7400 (4)0.38192 (12)0.0308 (7)
C30.1857 (3)0.7177 (4)0.41557 (13)0.0332 (8)
C40.1379 (3)0.6270 (4)0.50590 (13)0.0366 (8)
C50.1731 (3)0.5640 (4)0.55710 (13)0.0370 (8)
C60.2809 (3)0.5279 (5)0.57507 (15)0.0444 (9)
C70.3557 (3)0.5552 (5)0.54048 (14)0.0436 (9)
C80.3206 (2)0.6182 (4)0.48857 (13)0.0353 (8)
C90.2130 (2)0.6547 (4)0.47006 (12)0.0319 (7)
C100.2323 (2)0.8062 (4)0.32644 (12)0.0317 (7)
C110.1171 (3)0.9292 (4)0.26057 (13)0.0352 (8)
C120.2989 (3)0.8191 (4)0.28810 (13)0.0388 (8)
C130.4323 (3)0.3045 (5)0.30836 (14)0.0443 (9)
C140.3174 (2)0.3330 (4)0.28654 (12)0.0340 (8)
C150.2416 (3)0.3064 (4)0.31904 (13)0.0346 (8)
C160.1909 (3)0.2176 (4)0.40798 (13)0.0354 (8)
C170.2229 (3)0.1554 (4)0.45952 (13)0.0378 (8)
C180.3301 (3)0.1209 (5)0.47895 (14)0.0441 (9)
C190.4068 (3)0.1491 (5)0.44523 (15)0.0484 (10)
C200.3756 (3)0.2112 (4)0.39311 (13)0.0384 (8)
C210.2678 (2)0.2457 (4)0.37355 (12)0.0315 (7)
C220.2884 (2)0.3895 (4)0.23001 (13)0.0357 (8)
C230.1654 (3)0.4575 (4)0.16061 (13)0.0375 (8)
C240.3552 (3)0.4296 (5)0.19410 (14)0.0487 (10)
H2A−0.03331.00750.24920.062*
H2B0.02141.03760.20080.062*
H30.11380.74420.40280.039*
H40.06480.65050.49500.044*
H4A0.00830.46640.14500.063*
H4B0.06140.51850.09760.063*
H60.30280.48490.60990.053*
H70.42890.53230.55150.052*
H120.37120.78460.29280.047*
H150.16940.32730.30530.041*
H160.11810.24060.39600.042*
H180.35020.07950.51400.053*
H190.47990.12620.45750.057*
H240.43030.42390.20100.059*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0423 (5)0.0528 (6)0.0305 (5)−0.0011 (4)0.0088 (4)0.0006 (4)
S20.0480 (6)0.0865 (8)0.0360 (5)−0.0034 (5)0.0115 (4)0.0097 (5)
Cl10.0482 (6)0.0858 (8)0.0339 (5)−0.0029 (5)0.0069 (4)0.0074 (5)
Cl20.0571 (6)0.0611 (6)0.0452 (6)0.0043 (5)0.0192 (5)0.0086 (5)
N10.0300 (14)0.0429 (17)0.0278 (15)−0.0001 (12)0.0019 (12)0.0017 (12)
N20.039 (2)0.076 (3)0.0348 (19)0.0068 (18)0.0018 (15)0.0118 (18)
N30.0352 (16)0.0448 (17)0.0299 (16)0.0003 (13)0.0055 (12)0.0012 (13)
N40.045 (2)0.076 (3)0.037 (2)0.0023 (18)0.0042 (17)0.0137 (18)
O10.0354 (15)0.132 (3)0.0524 (17)0.0247 (16)0.0163 (13)0.0260 (17)
O20.0306 (12)0.0713 (17)0.0400 (14)0.0133 (12)0.0030 (11)0.0089 (13)
O30.0298 (13)0.0725 (17)0.0423 (15)0.0043 (12)0.0021 (11)0.0100 (12)
O40.0332 (14)0.118 (2)0.0566 (17)0.0055 (15)0.0144 (13)0.0211 (16)
C10.039 (2)0.052 (2)0.041 (2)0.0098 (17)0.0071 (17)0.0030 (18)
C20.0300 (17)0.0317 (19)0.0310 (18)0.0053 (14)0.0054 (14)−0.0028 (14)
C30.0269 (19)0.0353 (19)0.035 (2)0.0018 (15)−0.0019 (16)−0.0002 (15)
C40.0264 (19)0.040 (2)0.040 (2)0.0022 (15)−0.0052 (16)0.0005 (16)
C50.039 (2)0.038 (2)0.0329 (19)−0.0025 (16)0.0025 (15)−0.0023 (15)
C60.047 (2)0.051 (2)0.032 (2)0.0050 (18)−0.0068 (17)0.0015 (18)
C70.032 (2)0.055 (2)0.041 (2)0.0079 (18)−0.0040 (17)0.0004 (18)
C80.0329 (18)0.0380 (19)0.0345 (19)0.0044 (15)0.0032 (15)−0.0041 (16)
C90.0303 (18)0.0296 (18)0.0350 (19)0.0034 (14)0.0024 (15)−0.0001 (14)
C100.0322 (18)0.0339 (19)0.0285 (18)0.0001 (15)0.0027 (14)−0.0030 (15)
C110.0360 (19)0.0357 (19)0.0333 (19)−0.0048 (15)0.0025 (15)−0.0029 (15)
C120.035 (2)0.045 (2)0.038 (2)0.0007 (17)0.0097 (16)−0.0035 (16)
C130.035 (2)0.058 (2)0.039 (2)0.0054 (17)0.0053 (17)0.0029 (18)
C140.0294 (18)0.0353 (19)0.0372 (19)−0.0003 (14)0.0044 (15)−0.0022 (15)
C150.0269 (19)0.039 (2)0.036 (2)−0.0015 (16)−0.0037 (15)0.0005 (16)
C160.034 (2)0.034 (2)0.038 (2)0.0010 (16)0.0022 (17)0.0013 (16)
C170.046 (2)0.0333 (19)0.036 (2)−0.0013 (16)0.0108 (16)−0.0002 (15)
C180.048 (2)0.050 (2)0.033 (2)0.0004 (18)−0.0014 (18)0.0029 (18)
C190.030 (2)0.064 (3)0.048 (2)0.0042 (18)−0.0097 (18)0.0080 (19)
C200.0322 (19)0.043 (2)0.038 (2)−0.0008 (16)0.0008 (15)0.0002 (16)
C210.0293 (17)0.0329 (19)0.0313 (19)0.0010 (14)0.0006 (14)−0.0019 (14)
C220.0324 (18)0.038 (2)0.037 (2)−0.0023 (15)0.0052 (15)−0.0010 (16)
C230.037 (2)0.040 (2)0.034 (2)−0.0023 (15)0.0020 (16)−0.0031 (16)
C240.040 (2)0.065 (3)0.042 (2)−0.0030 (19)0.0088 (18)0.0055 (19)

Geometric parameters (Å, °)

S1—C121.713 (4)C13—C141.475 (4)
S1—C111.738 (3)C7—C61.376 (5)
Cl2—C171.749 (3)C7—H70.9300
Cl1—C51.750 (3)C2—C101.464 (4)
S2—C241.714 (4)C2—C11.470 (5)
S2—C231.736 (3)C15—C141.347 (4)
C3—C21.349 (4)C15—H150.9300
C3—C91.436 (4)C22—C241.347 (4)
C3—H30.9300C22—C141.467 (4)
O3—C201.371 (4)C23—N41.369 (4)
O3—C131.392 (4)C10—C121.364 (4)
O2—C81.381 (4)C5—C41.375 (4)
O2—C11.385 (4)C5—C61.388 (5)
N3—C231.298 (4)C1—O11.200 (4)
N3—C221.402 (4)C18—C191.381 (5)
C8—C91.385 (4)C18—C171.385 (5)
C8—C71.387 (4)C18—H180.9300
C16—C171.372 (4)C11—N21.369 (4)
C16—C211.395 (4)C6—H60.9300
C16—H160.9300C4—H40.9300
C21—C201.392 (4)C24—H240.9300
C21—C151.429 (4)C19—H190.9300
C9—C41.402 (4)C12—H120.9300
C20—C191.385 (4)N4—H4A0.8600
N1—C111.311 (4)N4—H4B0.8600
N1—C101.401 (4)N2—H2A0.8600
C13—O41.196 (4)N2—H2B0.8600
C12—S1—C1189.03 (16)C12—C10—N1114.5 (3)
C24—S2—C2388.61 (17)C12—C10—C2127.5 (3)
C2—C3—C9122.6 (3)N1—C10—C2118.0 (3)
C2—C3—H3118.7C15—C14—C22121.5 (3)
C9—C3—H3118.7C15—C14—C13119.1 (3)
C20—O3—C13122.8 (3)C22—C14—C13119.3 (3)
C8—O2—C1123.1 (3)C4—C5—C6122.3 (3)
C23—N3—C22109.8 (3)C4—C5—Cl1118.9 (3)
O2—C8—C9120.2 (3)C6—C5—Cl1118.8 (3)
O2—C8—C7117.0 (3)O1—C1—O2115.5 (3)
C9—C8—C7122.8 (3)O1—C1—C2127.3 (3)
C17—C16—C21119.6 (3)O2—C1—C2117.1 (3)
C17—C16—H16120.2C19—C18—C17119.0 (3)
C21—C16—H16120.2C19—C18—H18120.5
C20—C21—C16118.3 (3)C17—C18—H18120.5
C20—C21—C15118.2 (3)N1—C11—N2123.8 (3)
C16—C21—C15123.4 (3)N1—C11—S1115.1 (2)
C8—C9—C4117.7 (3)N2—C11—S1121.0 (3)
C8—C9—C3118.0 (3)C16—C17—C18122.0 (3)
C4—C9—C3124.2 (3)C16—C17—Cl2118.5 (3)
O3—C20—C19118.0 (3)C18—C17—Cl2119.5 (3)
O3—C20—C21120.4 (3)C7—C6—C5119.0 (3)
C19—C20—C21121.6 (3)C7—C6—H6120.5
C11—N1—C10110.0 (3)C5—C6—H6120.5
O4—C13—O3115.8 (3)C5—C4—C9119.3 (3)
O4—C13—C14127.3 (3)C5—C4—H4120.4
O3—C13—C14116.9 (3)C9—C4—H4120.4
C6—C7—C8118.9 (3)C22—C24—S2111.1 (3)
C6—C7—H7120.5C22—C24—H24124.4
C8—C7—H7120.5S2—C24—H24124.4
C3—C2—C10122.6 (3)C18—C19—C20119.9 (3)
C3—C2—C1118.9 (3)C18—C19—H19120.2
C10—C2—C1118.5 (3)C20—C19—H19120.2
C14—C15—C21122.3 (3)C10—C12—S1111.2 (2)
C14—C15—H15118.8C10—C12—H12124.4
C21—C15—H15118.8S1—C12—H12124.4
C24—C22—N3114.9 (3)C23—N4—H4A120.0
C24—C22—C14128.1 (3)C23—N4—H4B120.0
N3—C22—C14117.0 (3)H4A—N4—H4B120.0
N3—C23—N4123.2 (3)C11—N2—H2A120.0
N3—C23—S2115.5 (3)C11—N2—H2B120.0
N4—C23—S2121.3 (3)H2A—N2—H2B120.0

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2A···N3i0.862.313.124 (4)158
N4—H4A···N1ii0.862.273.116 (4)168
C7—H7···O2iii0.932.543.387 (4)152

Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) −x, y−1/2, −z+1/2; (iii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2672).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  • Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  • Khalfan, H., Abuknesha, R., Rond-Weaver, M., Price, R. G. & Robinson, R. (1987). Chem. Abstr. 106, 63932.
  • Maroncelli, M. & Fleming, G. R. (1987). J. Chem. Phys. 86, 6221–6239.
  • Morris, A. & Rusell, A. D. (1971). Med. Chem. 8, 39–59. [PubMed]
  • Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Venugopal, K. N., Jayashree, B. S. & Attimarad, M. (2004). Asian J. Chem. 16, 872–876.
  • Vishnumurthy, K., Guru Row, T. N. & Venkatesan, K. (2001). Molecular and Supramolecular Photochemistry, p. 427. New York: Mark Dekker Inc.
  • Watkin, D. M., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography