PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): o3167.
Published online 2009 November 21. doi:  10.1107/S1600536809049022
PMCID: PMC2971910

Di-tert-butyl 2,2′-[(2-hydroxy­ethyl)aza­nedi­yl]diacetate

Abstract

In the title compound, C14H27NO5, the hydr­oxy group and one of the acetate carbonyl O atoms are linked by an intra­molecular O—H(...)O hydrogen bond, forming an eight-membered ring. This inter­action gives rise to an asymmetric mol­ecular conformation.

Related literature

For details of the synthesis, see: Williams & Rapoport (1993 [triangle]); Amedio et al. (2000 [triangle]). For possible applications of the title compound, see: Yang et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o3167-scheme1.jpg

Experimental

Crystal data

  • C14H27NO5
  • M r = 289.37
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-o3167-efi1.jpg
  • a = 11.9767 (4) Å
  • b = 9.7187 (3) Å
  • c = 29.3476 (7) Å
  • V = 3416.00 (18) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 296 K
  • 0.36 × 0.21 × 0.08 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2007 [triangle]) T min = 0.970, T max = 0.993
  • 12339 measured reflections
  • 3958 independent reflections
  • 2503 reflections with I > 2σ(I)
  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.128
  • S = 1.02
  • 3958 reflections
  • 190 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.13 e Å−3
  • Δρmin = −0.17 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809049022/gk2237sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809049022/gk2237Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Natural Science Foundation of China (No. 20671013) and the National Basic Research Program of China (No. 2006CB500705).

supplementary crystallographic information

Comment

The aminodiacetate derivatives can find potential application when labeled by the novel 99mTc(CO)2(NO)2+ core to explore the 99mTc labelled radiopharmaceuticals (Yang et al., 2007). Thus, the development of aminodiacetate derivatives may lead to obtain some new imaging agents labelled by 99mTc core. Here we report the crystal structure of the title compound which can be used as a precursor in the synthesis of aminodiacetate derivatives.

The molecule of the title compound is shown in Fig. 1. The molecular conformation is to a large extentd determined by the intramolecular hydrogen bond O(5)—H(5)···O(2) (Table 1) which is a part of the eight-membered ring –O(5)—C(14)—C(13)—N(1)—C(6)—C(5)—O(2)······H(5)-. In the above ring, the torsion angles N(1)—C(13)—C(14)—O(5) and N(1)—C(6)—C(5)—O(2) are -57.2 (2)° and -3.5 (2)°.

Experimental

Tert-butyl 2-bromoacetate (22 g, 114 mmol) and KHCO3 (13 g, 130 mmol) were dissolved in DMF (100 ml) at 0°C. Then 2-aminoethanol (3.2 ml, 50 mmol) was added to the solution in drops within 1 h. After adding 2-aminoethanol, the solution was heated at 55 °C for 20 h. Subsequently, the mixture was washed by the saturated NaHCO3 solution and the crude product was extracted by ethyl acetate. After that, the organic phase was washed by saturated NaCl solution and the new organic phase was then dried by Na2SO4 for 48 h. After filtering the solution, the crude product was obtained. The crude product was recrystallized from ethyl acetate giving colorless block crystals of the title compound suitable for the single-crystal X-ray diffraction. IRnfrared Spectrum: 3438.3 cm-1; 2978.5 cm-1; 2933.7 cm-1; 1456.8 cm-1; 1393.6 cm-1; 1732.0 cm-1; 1368.6 cm-1; 1223.5 cm-1; 1070.9 cm-1; 1150.5 cm-1. 1H-NMR (CDCl3, 400 MHz): 3.90 (s, 1H), 3.53 (t, J = 5.1 Hz, 2H), 3.45 (s, 4H), 2.89 (t, J = 5.1 Hz, 2H), 1.47 (s, 18H). 13C-NMR (CDCl3, 400 MHz): δ 28.13, 56.64, 57.07, 59.34, 81.49, 171.46. MS:m/z 290.3 [M + H].

Refinement

The H atoms bound to C atoms were introduced in idealized positions (C-H = 0.96-0.97 Å) and allowed to ride on their respective parent atoms with Uiso(H) =1.2 Ueq(C). The H atom from the hydroxy group was located in a difference Fourier synthesis and in the refinement the O-H distance was restrained to 0.86 (1) Å [Uiso(H) =1.5 Ueq(O)].

Figures

Fig. 1.
The molecule the title compound, showing the atomic numbering; the displacement ellipsoids were drawn at the 30% probability level.
Fig. 2.
The packing diagram of title compound (for clarity, all H atoms are not shown).

Crystal data

C14H27NO5F(000) = 1264
Mr = 289.37Dx = 1.125 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3711 reflections
a = 11.9767 (4) Åθ = 2.2–26.1°
b = 9.7187 (3) ŵ = 0.08 mm1
c = 29.3476 (7) ÅT = 296 K
V = 3416.00 (18) Å3Block, colorless
Z = 80.36 × 0.21 × 0.08 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer3958 independent reflections
Radiation source: fine-focus sealed tube2503 reflections with I > 2σ(I)
graphiteRint = 0.022
phi and ω scansθmax = 27.6°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2007)h = −15→10
Tmin = 0.970, Tmax = 0.993k = −12→7
12339 measured reflectionsl = −38→25

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.02w = 1/[σ2(Fo2) + (0.0551P)2 + 0.5511P] where P = (Fo2 + 2Fc2)/3
3958 reflections(Δ/σ)max = 0.001
190 parametersΔρmax = 0.13 e Å3
1 restraintΔρmin = −0.17 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.52162 (16)0.1474 (2)0.74442 (6)0.0719 (5)
H1A0.57980.08760.73380.108*
H1B0.49570.11610.77360.108*
H1C0.55020.23930.74730.108*
N10.63856 (10)0.38227 (12)0.59060 (4)0.0459 (3)
O10.47237 (8)0.16745 (10)0.66460 (3)0.0480 (3)
C20.37573 (18)0.00455 (18)0.70716 (6)0.0777 (6)
H2A0.31870.00500.68420.117*
H2B0.3436−0.02120.73590.117*
H2C0.4327−0.06030.69900.117*
O20.52896 (11)0.38533 (11)0.67575 (4)0.0689 (4)
C30.33760 (16)0.2516 (2)0.72143 (7)0.0753 (5)
H3A0.37110.34110.72330.113*
H3B0.30270.22950.75000.113*
H3C0.28250.25110.69770.113*
O30.69461 (11)0.19726 (12)0.51907 (4)0.0714 (4)
C40.42619 (13)0.14629 (15)0.71095 (5)0.0473 (4)
O40.61496 (10)0.33760 (11)0.46780 (3)0.0586 (3)
C50.52554 (12)0.28259 (14)0.65316 (5)0.0459 (3)
O50.73364 (13)0.53528 (15)0.66616 (5)0.0839 (4)
H50.6636 (9)0.524 (3)0.6645 (9)0.126*
C60.58168 (13)0.26158 (15)0.60781 (5)0.0515 (4)
H6A0.63540.18730.61070.062*
H6B0.52590.23330.58580.062*
C70.61304 (14)0.41188 (16)0.54343 (5)0.0545 (4)
H7A0.64970.49720.53510.065*
H7B0.53320.42660.54070.065*
C80.64704 (13)0.30191 (16)0.50949 (5)0.0508 (4)
C90.63142 (15)0.24561 (18)0.42820 (5)0.0618 (4)
C100.56917 (19)0.1123 (2)0.43595 (8)0.0933 (7)
H10A0.60620.05990.45920.140*
H10B0.56770.06010.40820.140*
H10C0.49410.13200.44540.140*
C110.75478 (18)0.2232 (3)0.42041 (7)0.0882 (6)
H11A0.79210.31050.41920.132*
H11B0.76560.17540.39210.132*
H11C0.78500.16940.44490.132*
C120.5793 (2)0.3278 (2)0.38978 (6)0.0994 (8)
H12A0.50280.34770.39710.149*
H12B0.58240.27530.36210.149*
H12C0.61950.41230.38580.149*
C130.75774 (14)0.38686 (19)0.60054 (5)0.0614 (4)
H13A0.79210.45870.58240.074*
H13B0.79130.29990.59190.074*
C140.78138 (16)0.4137 (2)0.65010 (6)0.0750 (5)
H14A0.75320.33730.66800.090*
H14B0.86160.41800.65450.090*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0772 (12)0.0836 (12)0.0549 (10)−0.0102 (10)−0.0087 (9)0.0146 (9)
N10.0527 (7)0.0491 (7)0.0360 (6)−0.0043 (6)0.0032 (5)0.0030 (5)
O10.0588 (6)0.0447 (5)0.0406 (6)−0.0079 (5)0.0082 (4)−0.0007 (4)
C20.1038 (14)0.0652 (11)0.0641 (11)−0.0327 (11)0.0156 (10)0.0029 (9)
O20.1028 (10)0.0468 (6)0.0571 (7)−0.0129 (6)0.0304 (6)−0.0092 (5)
C30.0693 (11)0.0845 (13)0.0722 (12)0.0094 (10)0.0238 (10)0.0024 (10)
O30.0984 (9)0.0681 (7)0.0478 (7)0.0330 (7)−0.0009 (6)−0.0002 (5)
C40.0546 (8)0.0479 (8)0.0393 (8)−0.0062 (7)0.0076 (7)0.0034 (6)
O40.0760 (7)0.0625 (7)0.0374 (6)0.0156 (6)−0.0023 (5)−0.0022 (5)
C50.0531 (8)0.0434 (8)0.0411 (8)−0.0006 (7)0.0041 (7)0.0015 (6)
O50.1030 (10)0.0812 (9)0.0674 (8)−0.0272 (9)0.0050 (8)−0.0216 (7)
C60.0611 (9)0.0503 (8)0.0430 (8)−0.0069 (7)0.0096 (7)−0.0046 (7)
C70.0708 (10)0.0530 (8)0.0396 (8)0.0118 (8)0.0043 (7)0.0023 (7)
C80.0577 (9)0.0556 (9)0.0391 (8)0.0082 (8)0.0040 (7)0.0024 (7)
C90.0757 (11)0.0699 (11)0.0397 (9)0.0100 (9)−0.0004 (8)−0.0105 (8)
C100.1030 (16)0.0898 (15)0.0872 (16)−0.0163 (13)−0.0079 (13)−0.0199 (12)
C110.0809 (13)0.1181 (17)0.0658 (12)0.0111 (13)0.0199 (11)−0.0130 (12)
C120.146 (2)0.1065 (17)0.0456 (11)0.0351 (15)−0.0202 (12)−0.0077 (11)
C130.0567 (10)0.0692 (11)0.0584 (10)−0.0081 (8)0.0033 (8)−0.0044 (8)
C140.0693 (12)0.0905 (14)0.0653 (12)−0.0131 (10)−0.0139 (9)−0.0023 (11)

Geometric parameters (Å, °)

C1—C41.507 (2)O5—H50.848 (10)
C1—H1A0.9600C6—H6A0.9700
C1—H1B0.9600C6—H6B0.9700
C1—H1C0.9600C7—C81.517 (2)
N1—C71.4465 (18)C7—H7A0.9700
N1—C61.4475 (18)C7—H7B0.9700
N1—C131.458 (2)C9—C111.511 (3)
O1—C51.3306 (17)C9—C101.512 (3)
O1—C41.4830 (16)C9—C121.516 (2)
C2—C41.508 (2)C10—H10A0.9600
C2—H2A0.9600C10—H10B0.9600
C2—H2B0.9600C10—H10C0.9600
C2—H2C0.9600C11—H11A0.9600
O2—C51.1992 (17)C11—H11B0.9600
C3—C41.506 (2)C11—H11C0.9600
C3—H3A0.9600C12—H12A0.9600
C3—H3B0.9600C12—H12B0.9600
C3—H3C0.9600C12—H12C0.9600
O3—C81.1992 (17)C13—C141.504 (2)
O4—C81.3285 (17)C13—H13A0.9700
O4—C91.4794 (18)C13—H13B0.9700
C5—C61.505 (2)C14—H14A0.9700
O5—C141.394 (2)C14—H14B0.9700
C4—C1—H1A109.5N1—C7—H7B108.4
C4—C1—H1B109.5C8—C7—H7B108.4
H1A—C1—H1B109.5H7A—C7—H7B107.4
C4—C1—H1C109.5O3—C8—O4125.07 (14)
H1A—C1—H1C109.5O3—C8—C7124.84 (14)
H1B—C1—H1C109.5O4—C8—C7110.08 (13)
C7—N1—C6113.32 (12)O4—C9—C11109.66 (14)
C7—N1—C13113.11 (12)O4—C9—C10109.51 (14)
C6—N1—C13114.57 (13)C11—C9—C10112.41 (17)
C5—O1—C4121.77 (11)O4—C9—C12102.18 (14)
C4—C2—H2A109.5C11—C9—C12111.49 (17)
C4—C2—H2B109.5C10—C9—C12111.10 (17)
H2A—C2—H2B109.5C9—C10—H10A109.5
C4—C2—H2C109.5C9—C10—H10B109.5
H2A—C2—H2C109.5H10A—C10—H10B109.5
H2B—C2—H2C109.5C9—C10—H10C109.5
C4—C3—H3A109.5H10A—C10—H10C109.5
C4—C3—H3B109.5H10B—C10—H10C109.5
H3A—C3—H3B109.5C9—C11—H11A109.5
C4—C3—H3C109.5C9—C11—H11B109.5
H3A—C3—H3C109.5H11A—C11—H11B109.5
H3B—C3—H3C109.5C9—C11—H11C109.5
O1—C4—C3110.86 (12)H11A—C11—H11C109.5
O1—C4—C1108.31 (12)H11B—C11—H11C109.5
C3—C4—C1113.35 (15)C9—C12—H12A109.5
O1—C4—C2102.02 (12)C9—C12—H12B109.5
C3—C4—C2110.68 (15)H12A—C12—H12B109.5
C1—C4—C2111.02 (14)C9—C12—H12C109.5
C8—O4—C9121.82 (12)H12A—C12—H12C109.5
O2—C5—O1125.25 (13)H12B—C12—H12C109.5
O2—C5—C6125.91 (13)N1—C13—C14112.53 (14)
O1—C5—C6108.83 (12)N1—C13—H13A109.1
C14—O5—H5106.1 (19)C14—C13—H13A109.1
N1—C6—C5114.14 (12)N1—C13—H13B109.1
N1—C6—H6A108.7C14—C13—H13B109.1
C5—C6—H6A108.7H13A—C13—H13B107.8
N1—C6—H6B108.7O5—C14—C13113.37 (16)
C5—C6—H6B108.7O5—C14—H14A108.9
H6A—C6—H6B107.6C13—C14—H14A108.9
N1—C7—C8115.57 (13)O5—C14—H14B108.9
N1—C7—H7A108.4C13—C14—H14B108.9
C8—C7—H7A108.4H14A—C14—H14B107.7
C5—O1—C4—C362.24 (18)C9—O4—C8—O32.7 (2)
C5—O1—C4—C1−62.70 (17)C9—O4—C8—C7−176.42 (14)
C5—O1—C4—C2−179.88 (14)N1—C7—C8—O3−1.9 (2)
C4—O1—C5—O2−10.4 (2)N1—C7—C8—O4177.19 (13)
C4—O1—C5—C6168.74 (12)C8—O4—C9—C11−63.4 (2)
C7—N1—C6—C5−132.21 (13)C8—O4—C9—C1060.4 (2)
C13—N1—C6—C595.96 (16)C8—O4—C9—C12178.25 (16)
O2—C5—C6—N1−3.5 (2)C7—N1—C13—C14156.64 (14)
O1—C5—C6—N1177.39 (12)C6—N1—C13—C14−71.43 (18)
C6—N1—C7—C8−62.21 (18)N1—C13—C14—O5−57.2 (2)
C13—N1—C7—C870.33 (18)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O5—H5···O20.85 (1)2.13 (2)2.8658 (18)145 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2237).

References

  • Amedio, J. C., Van Wagenen, G., Zavlin, G., Gyorkos, A. & Peterson, S. A. (2000). Synth. Commun. 30, 3755-3763.
  • Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2005). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Williams, M. A. & Rapoport, H. (1993). J. Org. Chem. 58, 1151–1158.
  • Yang, Y., Zhang, J. X., Wang, J. J. & Zhu, L. (2007). J. Radioanal. Nucl. Chem. 273, 31–36.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography