PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): o3160.
Published online 2009 November 21. doi:  10.1107/S1600536809047205
PMCID: PMC2971908

2-(4-Pyridylmeth­oxy)phenol

Abstract

In the crystal structure of the title compound, C12H11NO2, inversion-related mol­ecules are linked into dimers by pairs of O—H(...)N hydrogen bonds between the hydr­oxy group and the pyridyl ring. In addition, a π–π inter­action [with a centroid–centroid distance of 3.78 (1) Å] is found between the two pyridyl rings of the dimer. The benzene ring forms a dihedral angle of 71.6 (1)° with the pyridine ring

Related literature

For details of the synthesis, see Gao et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o3160-scheme1.jpg

Experimental

Crystal data

  • C12H11NO2
  • M r = 201.22
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-o3160-efi1.jpg
  • a = 11.800 (3) Å
  • b = 9.114 (4) Å
  • c = 19.041 (7) Å
  • V = 2047.7 (13) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 291 K
  • 0.37 × 0.35 × 0.20 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.968, T max = 0.983
  • 14969 measured reflections
  • 1802 independent reflections
  • 1139 reflections with I > 2σ(I)
  • R int = 0.083

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059
  • wR(F 2) = 0.145
  • S = 1.03
  • 1802 reflections
  • 137 parameters
  • H-atom parameters constrained
  • Δρmax = 0.15 e Å−3
  • Δρmin = −0.13 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998 [triangle]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809047205/fj2252sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809047205/fj2252Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Jilin Agricultural Science and Technology College for supporting this study.

supplementary crystallographic information

Comment

In the title compound, the 2-(pyridin-4-ylmethoxy)phenol ligand, all bonds and angles are in normal region. The benzene ring forms a dihedral angle of 71.6 (1)° with the pyridine rings (Figure 1).

In the crystal structure, the intramolecular O—H···O hydrogen bonds are found between adjacent hydroxys and O atoms. After then, the intermolecular O—H···N hydrogen bonds and π—π interactions (3.78 (1)° A) link molecules into dimer (Figure 2, Table 1).

Experimental

The 2-(Pyridin-4-ylmethoxy)phenol was synthesized by the reaction of o-benzenediol and 4-chloromethylpyridine hydrochloride under nitrogen atmosphere and alkaline condition (Gao et al., 2004). Colourless block crystals of title compound were obtained by slow evaporation of an methanol solution after several days.

Refinement

H atoms bound to C atoms and the H atoms of the hydroxy groups were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 Å (aromatic), C—H = 0.97 Å (methylene), O—H = 0.82 Å and with Uiso(H) = 1.2Ueq(C), Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.
The molecular structure of the title compound, showing displacement ellipsoids at the 50% probability level for non-H atoms.
Fig. 2.
A dimer view, forming by hydrogen bonds and π—π interactions. Green dashed lines indicate the hydrogen bonds, blue dashed lines indicate the π—π interactions.

Crystal data

C12H11NO2F(000) = 848
Mr = 201.22Dx = 1.305 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 9420 reflections
a = 11.800 (3) Åθ = 3.0–27.4°
b = 9.114 (4) ŵ = 0.09 mm1
c = 19.041 (7) ÅT = 291 K
V = 2047.7 (13) Å3Block, colorless
Z = 80.37 × 0.35 × 0.20 mm

Data collection

Rigaku R-AXIS RAPID diffractometer1802 independent reflections
Radiation source: fine-focus sealed tube1139 reflections with I > 2σ(I)
graphiteRint = 0.083
ω scansθmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)h = −14→12
Tmin = 0.968, Tmax = 0.983k = −10→10
14969 measured reflectionsl = −22→22

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.0709P)2 + 0.2741P] where P = (Fo2 + 2Fc2)/3
1802 reflections(Δ/σ)max < 0.001
137 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = −0.13 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.0611 (2)−0.0878 (3)0.41781 (16)0.0667 (8)
H10.0138−0.07320.37940.080*
C20.0381 (2)−0.1961 (3)0.46523 (17)0.0704 (8)
H2−0.0256−0.25410.45770.085*
C30.1917 (2)−0.1394 (3)0.53017 (15)0.0682 (8)
H30.2377−0.15650.56900.082*
C40.2214 (2)−0.0278 (3)0.48491 (15)0.0640 (7)
H40.28590.02800.49340.077*
C50.1553 (2)0.0002 (3)0.42746 (14)0.0555 (7)
C60.1845 (2)0.1187 (3)0.37560 (15)0.0683 (8)
H6A0.25930.15760.38560.082*
H6B0.18490.07890.32840.082*
C70.1055 (2)0.3409 (3)0.33056 (13)0.0520 (7)
C80.1831 (2)0.3476 (3)0.27619 (14)0.0617 (7)
H80.23890.27610.27210.074*
C90.1775 (2)0.4614 (3)0.22763 (14)0.0666 (8)
H90.22880.46530.19060.080*
C100.0966 (2)0.5674 (3)0.23453 (15)0.0683 (8)
H100.09340.64410.20240.082*
C110.0199 (2)0.5614 (3)0.28856 (15)0.0674 (8)
H11−0.03470.63450.29270.081*
C120.0226 (2)0.4485 (3)0.33687 (14)0.0573 (7)
N10.1011 (2)−0.2237 (2)0.52130 (12)0.0647 (6)
O10.10215 (15)0.23246 (18)0.38082 (9)0.0601 (5)
O2−0.05674 (18)0.4472 (2)0.38861 (11)0.0786 (7)
H2A−0.05300.36940.41010.118*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0637 (17)0.0617 (18)0.0747 (18)0.0019 (15)−0.0105 (14)0.0120 (16)
C20.0573 (18)0.0585 (19)0.095 (2)−0.0047 (14)−0.0003 (17)0.0094 (17)
C30.075 (2)0.0643 (19)0.0654 (18)0.0133 (17)−0.0043 (15)0.0045 (15)
C40.0631 (17)0.0499 (16)0.0790 (19)−0.0027 (14)−0.0037 (16)−0.0003 (15)
C50.0557 (15)0.0437 (15)0.0670 (17)0.0100 (13)0.0081 (14)0.0017 (13)
C60.0689 (18)0.0535 (17)0.083 (2)0.0132 (15)0.0134 (15)0.0154 (15)
C70.0568 (15)0.0428 (14)0.0564 (15)−0.0058 (13)−0.0043 (13)0.0051 (12)
C80.0640 (17)0.0532 (16)0.0679 (17)−0.0038 (13)−0.0007 (14)0.0006 (14)
C90.0764 (19)0.0660 (18)0.0573 (16)−0.0129 (16)−0.0033 (14)0.0084 (15)
C100.0752 (19)0.0616 (18)0.0681 (19)−0.0076 (16)−0.0171 (16)0.0177 (15)
C110.0686 (18)0.0556 (17)0.078 (2)0.0034 (14)−0.0133 (16)0.0130 (15)
C120.0576 (16)0.0490 (16)0.0652 (17)0.0019 (14)−0.0038 (14)0.0020 (13)
N10.0634 (14)0.0528 (14)0.0778 (16)0.0094 (12)0.0135 (13)0.0104 (12)
O10.0650 (12)0.0450 (10)0.0703 (12)0.0096 (9)0.0098 (9)0.0095 (9)
O20.0792 (14)0.0630 (14)0.0936 (15)0.0222 (11)0.0211 (12)0.0206 (11)

Geometric parameters (Å, °)

C1—C21.365 (4)C7—O11.376 (3)
C1—C51.384 (4)C7—C81.383 (3)
C1—H10.9300C7—C121.390 (3)
C2—N11.325 (3)C8—C91.391 (4)
C2—H20.9300C8—H80.9300
C3—N11.327 (3)C9—C101.365 (4)
C3—C41.378 (4)C9—H90.9300
C3—H30.9300C10—C111.371 (4)
C4—C51.367 (4)C10—H100.9300
C4—H40.9300C11—C121.381 (4)
C5—C61.503 (4)C11—H110.9300
C6—O11.424 (3)C12—O21.359 (3)
C6—H6A0.9700O2—H2A0.8200
C6—H6B0.9700
C2—C1—C5119.4 (3)O1—C7—C8124.8 (2)
C2—C1—H1120.3O1—C7—C12115.2 (2)
C5—C1—H1120.3C8—C7—C12119.9 (2)
N1—C2—C1124.0 (3)C7—C8—C9120.0 (3)
N1—C2—H2118.0C7—C8—H8120.0
C1—C2—H2118.0C9—C8—H8120.0
N1—C3—C4123.5 (3)C10—C9—C8119.8 (3)
N1—C3—H3118.3C10—C9—H9120.1
C4—C3—H3118.3C8—C9—H9120.1
C5—C4—C3119.6 (3)C9—C10—C11120.4 (3)
C5—C4—H4120.2C9—C10—H10119.8
C3—C4—H4120.2C11—C10—H10119.8
C4—C5—C1117.1 (3)C10—C11—C12120.9 (3)
C4—C5—C6122.0 (3)C10—C11—H11119.5
C1—C5—C6120.9 (3)C12—C11—H11119.5
O1—C6—C5108.7 (2)O2—C12—C11118.3 (2)
O1—C6—H6A109.9O2—C12—C7122.7 (2)
C5—C6—H6A109.9C11—C12—C7119.0 (3)
O1—C6—H6B109.9C2—N1—C3116.4 (2)
C5—C6—H6B109.9C7—O1—C6117.04 (19)
H6A—C6—H6B108.3C12—O2—H2A109.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2A···N1i0.821.952.714 (3)155

Symmetry codes: (i) −x, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2252).

References

  • Gao, C.-M., Cao, D. & Zhu, L. (2004). Photogr. Sci. Photochem. 22, 103–107.
  • Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
  • Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography