PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): o3050.
Published online 2009 November 11. doi:  10.1107/S1600536809046509
PMCID: PMC2971903

4-Hydr­oxy-6-[(4-hydr­oxy-1-oxo-1,2-dihydro­phthalazin-6-yl)carbon­yl]phthalazin-1(2H)-one

Abstract

In the crystal structure of the title compound, C17H10N4O5, the mol­ecules lie on twofold axes (through the ketone bridge C and O atoms). The dihedral angle between the two phthalazine rings is 52.25 (1)°. In the crystal, inter­molecular N—H(...)O and O—H(...)O inter­actions link the mol­ecules.

Related literature

For the acyl­ate reaction of polycarboxyl­ate with hydrazine hydrate, see: Benniston et al. (1999 [triangle]); Hu et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o3050-scheme1.jpg

Experimental

Crystal data

  • C17H10N4O5
  • M r = 350.29
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o3050-efi1.jpg
  • a = 11.576 (3) Å
  • b = 10.511 (3) Å
  • c = 12.274 (3) Å
  • β = 111.718 (4)°
  • V = 1387.4 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.13 mm−1
  • T = 293 K
  • 0.30 × 0.25 × 0.10 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1995 [triangle]) T min = 0.963, T max = 0.987
  • 3800 measured reflections
  • 1370 independent reflections
  • 774 reflections with I > 2σ(I)
  • R int = 0.057

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059
  • wR(F 2) = 0.161
  • S = 0.99
  • 1370 reflections
  • 120 parameters
  • H-atom parameters constrained
  • Δρmax = 0.27 e Å−3
  • Δρmin = −0.22 e Å−3

Data collection: SMART (Bruker, 1999 [triangle]); cell refinement: SAINT (Bruker, 1999 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809046509/jh2110sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809046509/jh2110Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Doctoral Foundation of North University of China.

supplementary crystallographic information

Comment

In situ hydrothermal acylate reaction of multidentate aromatic polycarboxylate with hydrazine hydrate has been investigated (Benniston et al., 1999; Hu et al., 2004). We intend to select 3, 3'-4, 4'-benzophenonetetracarboxylic dianhydride as the ligand to continue the exploration of the in situ acylate reaction. However, the crystals of the title compound were obtained unintentionally as the harvested product of the hydrothermal reaction of 3, 3'-4, 4'-benzophenonetetracarboxylic dianhydride, CoCl2 and hydrazine hydrate. In the title compound, a twofold axis lies in the C atom and O atom of the ketone bridge (Fig. 1). Each organic molecule connects six adjacent ones into a three-dimensional supramolecular network by intermolecular O—H···O (2.576 Å) and N—H···O (3.034 Å) hydrogen bonds (Fig. 2 and Fig. 3).

Experimental

Yellow needle-like crystals of the title compound were synthesized hydrothermally from a mixture of CoCl2.H2O (0.0230 g), 3, 3'-4, 4'-benzophenonetetracarboxylic dianhydride (0.0641 g), hydrazine hydrate (0.028 ml), and deionized water (15 ml) in a 23 ml Teflon-lined stainless steel autoclave under autogenous pressure heated to 170 °C for 4 days and cooled to room temperature. Crystalline product was filtered, washed with distilled water, and dried at ambient temperature.

Refinement

The H atoms were positioned geometrically and refined using riding model with C—H = 0.93 Å, N—H = 0.85 Å and isotropic displacement parameters Uiso(H) = 1.2U(Ceq / Neq). However, the H of the O1 atom was located in a difference Fourier map refined as riding, with Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.
The molecular structure of the title compound shown with 30% probabilty ellipsoids [symmetry code: (A) 1 - x, y, 1.5 - z].
Fig. 2.
View of the crystal packing of the title compound, with O—H···O and N—H···O hydrogen bonds drawn as dashed lines [see Table 1 for details; H atoms not involved in hydrogen bonding have been ...
Fig. 3.
Three-dimensional network formed by hydrogen bonds (dashed lines).

Crystal data

C17H10N4O5F(000) = 720
Mr = 350.29Dx = 1.677 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 11.576 (3) Åθ = 2.7–26.0°
b = 10.511 (3) ŵ = 0.13 mm1
c = 12.274 (3) ÅT = 293 K
β = 111.718 (4)°Needle-like, yellow
V = 1387.4 (6) Å30.30 × 0.25 × 0.10 mm
Z = 4

Data collection

Bruker SMART APEX CCD diffractometer1370 independent reflections
Radiation source: fine-focus sealed tube774 reflections with I > 2σ(I)
graphiteRint = 0.057
ω scansθmax = 26.0°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 1995)h = −14→12
Tmin = 0.963, Tmax = 0.987k = −12→12
3800 measured reflectionsl = −15→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161H-atom parameters constrained
S = 0.99w = 1/[σ2(Fo2) + (0.0758P)2] where P = (Fo2 + 2Fc2)/3
1370 reflections(Δ/σ)max = 0.005
120 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = −0.22 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O30.5000−0.2105 (3)0.75000.0411 (9)
O10.1272 (2)0.0713 (2)0.23363 (19)0.0468 (7)
H10.09020.11640.17320.070*
O20.5078 (2)0.3361 (2)0.5277 (2)0.0512 (8)
N10.2410 (3)0.2518 (3)0.2824 (2)0.0406 (8)
N20.3389 (3)0.3149 (3)0.3641 (2)0.0367 (8)
H20.35130.39160.34670.044*
C60.3861 (3)0.1464 (3)0.5017 (3)0.0303 (8)
C90.2158 (3)0.1394 (3)0.3114 (3)0.0356 (9)
C50.2831 (3)0.0802 (3)0.4238 (2)0.0314 (8)
C40.2480 (3)−0.0367 (3)0.4556 (3)0.0362 (9)
H40.1781−0.07900.40520.043*
C70.4564 (3)0.0920 (3)0.6103 (2)0.0320 (8)
H50.52540.13460.66200.038*
C80.4182 (3)0.2707 (3)0.4689 (3)0.0340 (8)
C30.3181 (3)−0.0884 (3)0.5624 (3)0.0363 (9)
H30.2956−0.16680.58350.044*
C10.5000−0.0954 (4)0.75000.0281 (10)
C20.4228 (3)−0.0255 (3)0.6404 (2)0.0297 (8)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O30.046 (2)0.030 (2)0.0369 (19)0.0000.0043 (17)0.000
O10.0448 (16)0.0439 (16)0.0330 (14)−0.0014 (13)−0.0076 (12)0.0032 (11)
O20.0573 (18)0.0442 (16)0.0328 (14)−0.0200 (14)−0.0057 (13)0.0032 (12)
N10.0419 (18)0.0406 (19)0.0291 (15)0.0021 (15)0.0011 (14)−0.0015 (13)
N20.0413 (18)0.0273 (16)0.0286 (15)−0.0031 (13)−0.0020 (14)0.0025 (12)
C60.033 (2)0.032 (2)0.0226 (16)−0.0007 (15)0.0059 (16)−0.0040 (14)
C90.038 (2)0.033 (2)0.0260 (18)0.0018 (17)0.0002 (17)−0.0027 (15)
C50.0308 (19)0.033 (2)0.0254 (16)0.0047 (16)0.0051 (15)−0.0033 (14)
C40.037 (2)0.032 (2)0.0297 (18)−0.0059 (16)0.0016 (17)−0.0023 (15)
C70.0294 (19)0.035 (2)0.0231 (17)−0.0043 (16)−0.0001 (15)−0.0035 (14)
C80.038 (2)0.033 (2)0.0254 (17)−0.0009 (17)0.0053 (16)−0.0021 (15)
C30.039 (2)0.033 (2)0.0302 (18)−0.0042 (17)0.0050 (16)−0.0010 (16)
C10.028 (3)0.024 (3)0.027 (2)0.0000.005 (2)0.000
C20.035 (2)0.030 (2)0.0217 (17)0.0007 (15)0.0074 (16)−0.0046 (13)

Geometric parameters (Å, °)

O3—C11.210 (5)C9—C51.450 (4)
O1—C91.323 (4)C5—C41.394 (4)
O1—H10.8501C4—C31.373 (4)
O2—C81.231 (4)C4—H40.9300
N1—C91.298 (4)C7—C21.386 (4)
N1—N21.374 (4)C7—H50.9300
N2—C81.357 (4)C3—C21.401 (4)
N2—H20.8600C3—H30.9300
C6—C71.401 (4)C1—C2i1.502 (4)
C6—C51.406 (4)C1—C21.502 (4)
C6—C81.455 (5)
C9—O1—H1109.5C5—C4—H4120.5
C9—N1—N2116.6 (3)C2—C7—C6119.7 (3)
C8—N2—N1127.8 (3)C2—C7—H5120.1
C8—N2—H2116.1C6—C7—H5120.1
N1—N2—H2116.1O2—C8—N2119.5 (3)
C7—C6—C5119.5 (3)O2—C8—C6125.8 (3)
C7—C6—C8120.8 (3)N2—C8—C6114.6 (3)
C5—C6—C8119.7 (3)C4—C3—C2121.5 (3)
N1—C9—O1119.2 (3)C4—C3—H3119.3
N1—C9—C5123.8 (3)C2—C3—H3119.3
O1—C9—C5117.0 (3)O3—C1—C2i119.3 (2)
C4—C5—C6120.5 (3)O3—C1—C2119.3 (2)
C4—C5—C9122.3 (3)C2i—C1—C2121.5 (4)
C6—C5—C9117.2 (3)C7—C2—C3119.7 (3)
C3—C4—C5119.0 (3)C7—C2—C1122.8 (3)
C3—C4—H4120.5C3—C2—C1117.3 (3)
C9—N1—N2—C84.9 (5)N1—N2—C8—O2173.9 (3)
N2—N1—C9—O1−176.2 (3)N1—N2—C8—C6−6.8 (5)
N2—N1—C9—C51.1 (5)C7—C6—C8—O22.4 (5)
C7—C6—C5—C42.4 (5)C5—C6—C8—O2−177.7 (3)
C8—C6—C5—C4−177.5 (3)C7—C6—C8—N2−176.8 (3)
C7—C6—C5—C9−178.3 (3)C5—C6—C8—N23.1 (4)
C8—C6—C5—C91.8 (5)C5—C4—C3—C20.8 (5)
N1—C9—C5—C4175.2 (3)C6—C7—C2—C3−0.6 (5)
O1—C9—C5—C4−7.5 (5)C6—C7—C2—C1174.2 (3)
N1—C9—C5—C6−4.1 (5)C4—C3—C2—C70.6 (5)
O1—C9—C5—C6173.2 (3)C4—C3—C2—C1−174.4 (3)
C6—C5—C4—C3−2.4 (5)O3—C1—C2—C7−148.7 (2)
C9—C5—C4—C3178.4 (3)C2i—C1—C2—C731.3 (2)
C5—C6—C7—C2−0.9 (5)O3—C1—C2—C326.2 (3)
C8—C6—C7—C2179.0 (3)C2i—C1—C2—C3−153.8 (3)

Symmetry codes: (i) −x+1, y, −z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···O2ii0.851.762.581 (3)163
N2—H2···O1iii0.862.193.034 (4)168

Symmetry codes: (ii) x−1/2, −y+1/2, z−1/2; (iii) −x+1/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2110).

References

  • Benniston, A. C., Yufit, D. S. & Howard, J. A. K. (1999). Acta Cryst. C55, 1535–1536.
  • Bruker (1999). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Hu, X. X., Xu, J. Q., Cheng, P., Chen, X. Y., Cui, X. B., Song, J. F., Yang, G. D. & Wang, T. G. (2004). Inorg. Chem. 43, 2261–2266. [PubMed]
  • Sheldrick, G. M. (1995). SADABS. University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography