PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): m1617–m1618.
Published online 2009 November 21. doi:  10.1107/S1600536809048429
PMCID: PMC2971902

Poly[[μ2-acetato-aquadi-μ3-isonicotinato-erbium(III)silver(I)] perchlorate]

Abstract

In the title three-dimensional heterometallic complex, {[AgEr(C6H4NO2)2(C2H3O2)(H2O)]ClO4}n, the eight-coordin­ate ErIII ion adopts a distorted bicapped trigonal-prismatic geometry, being coordinated by four O atoms from four different isonicotinate ligands, three O atoms from two different acetate ligands and one O atom of the water mol­ecule. The two-coordinate AgI ion is surrounded by two N atoms from two different isonicotinate anions in a slightly bent configuration. These building blocks are connected by bridging isonicotinate and acetate ligands, generating a three-dimensional network. Ths structure is consolidated by O—H(...)O hydrogen bonding between the coordinated water mol­ecule and a carboxyl­ate group of the acetate ligand. The perchlorate anion is disordered over two sites with site-occupancy factors of 0.526 (13) and 0.474 (13), while the methyl group of the acetate ligand is equally disordered over two sites.

Related literature

For background to lanthanide–transition metal heterometallic complexes, see: Cheng et al. (2006 [triangle]); Kuang et al. (2007 [triangle]); Peng et al. (2008 [triangle]); Zhu et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1617-scheme1.jpg

Experimental

Crystal data

  • [AgEr(C6H4NO2)2(C2H3O2)(H2O)]ClO4
  • M r = 695.84
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1617-efi4.jpg
  • a = 16.1952 (11) Å
  • b = 14.8673 (11) Å
  • c = 7.8938 (6) Å
  • β = 91.783 (1)°
  • V = 1899.7 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 5.62 mm−1
  • T = 296 K
  • 0.23 × 0.20 × 0.19 mm

Data collection

  • Bruker APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.285, T max = 0.344
  • 9611 measured reflections
  • 3423 independent reflections
  • 3009 reflections with I > 2σ(I)
  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.025
  • wR(F 2) = 0.057
  • S = 1.05
  • 3423 reflections
  • 320 parameters
  • 158 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.76 e Å−3
  • Δρmin = −1.04 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP in SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809048429/wm2280sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809048429/wm2280Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author acknowledges South China Normal University for supporting this work.

supplementary crystallographic information

Comment

In the past few years, lanthanide-transition metal heterometallic complexes with bridging multifunctional organic ligands gained increasing interest, not only because of their crystal structures, but also due to their applications in ion exchange, magnetism, catalysis and as luminescent material (Cheng et al., 2006; Kuang et al., 2007; Peng et al., 2008; Zhu et al., 2009). As an extension of this research, the structure of the title compound, a new heterometallic coordination polymer, (I), has been determined and is presented in this article.

In the title compound (Fig. 1), there are one ErIII ion, one AgI ion, two halves of an acetate ligand, two isonicotinate ligands, one coordinated water molecule, and one perchlorate anion in the asymmetric unit. Each ErIII ion is eight-coordinated by four O atoms from four different isonicotinate ligands [Er—O distances ranging from 2.266 (3) to 2.308 (3) Å], three O atoms from two different acetate ligands [Er—O distances ranging from 2.341 (3) to 2.454 (3) Å], and one O atom of water molecule [Er—O distance 2.369 (3) Å]. The Er center can be described as having a distorted bicapped trigonal-prismatic coordination geometry. The two-coordinated AgI ion is bonded to two N atoms from two different isonicotinate anions [Ag—N distances 2.153 (4) and 2.154 (4) Å] and adopts a slight distortion from linearity with an N1—Ag1—N2 angle of 165.44 (19) °. These metal coordination units are connected by bridging isonicotinate and acetate ligands, generating a three-dimensional network (Fig. 2). The coordinated water molecules exhibit O—H···O hydrogen bonding to the uncoordinated O atom of a carboxylate group and to the acetate ligand (Table 1).

Experimental

A mixture of AgNO3 (0.057 g, 0.33 mmol), Er2O3 (0.116 g, 0.33 mmol), isonicotinic acid (0.164 g, 1.33 mmol), CH3COONa (0.057 g, 0.7 mmol), H2O (7 ml), and HClO4 (0.257 mmol) (pH 2) was sealed in a 20 ml Teflon-lined reaction vessel at 443 K for 6 days and then slowly cooled to room temperature. The product was collected by filtration, washed with water and was air-dried. Colorless block-shaped crystals suitable for X-ray analysis were obtained.

Refinement

H atoms bonded to C atoms were positioned geometrically and refined as riding, with C—H = 0.93 or 0.96 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). H atoms of water molecules were found from difference Fourier maps and refined isotropically with a restraint of O—H = 0.81 - 0.82 Å. The perchlorate anion is disordered over two sites with site occupancy factors 0.526 (13) and 0.474 (13), whereas the methyl group of the acetate ligand is disordered over two sites with site occupancy factors 0.51 (5) and 0.49 (5).

Figures

Fig. 1.
The molecular structure showing the atomic-numbering scheme and displacement ellipsoids drawn at the 30% probability level. Both disorder components are shown. Symmetry codes: (A) 2 - x, 2 - y, -z; (B) x, 1.5 - y, 1/2 + z; (C) 1 - x, 1/2 + y, 0.5 - z; ...
Fig. 2.
A view of the three-dimensional arrangement of the title compound. Hydrogen atoms were omitted for clarity.

Crystal data

[AgEr(C6H4NO2)2(C2H3O2)(H2O)]ClO4F(000) = 1324
Mr = 695.84Dx = 2.433 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4797 reflections
a = 16.1952 (11) Åθ = 2.5–27.9°
b = 14.8673 (11) ŵ = 5.62 mm1
c = 7.8938 (6) ÅT = 296 K
β = 91.783 (1)°Block, colourless
V = 1899.7 (2) Å30.23 × 0.20 × 0.19 mm
Z = 4

Data collection

Bruker APEXII area-detector diffractometer3423 independent reflections
Radiation source: fine-focus sealed tube3009 reflections with I > 2σ(I)
graphiteRint = 0.030
[var phi] and ω scanθmax = 25.2°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −19→19
Tmin = 0.285, Tmax = 0.344k = −17→17
9611 measured reflectionsl = −5→9

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.057H atoms treated by a mixture of independent and constrained refinement
S = 1.05w = 1/[σ2(Fo2) + (0.0218P)2 + 3.7155P] where P = (Fo2 + 2Fc2)/3
3423 reflections(Δ/σ)max = 0.002
320 parametersΔρmax = 0.76 e Å3
158 restraintsΔρmin = −1.04 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Er10.955305 (12)0.883792 (13)0.05025 (3)0.01689 (8)
Ag10.47352 (3)0.74056 (4)0.10055 (8)0.06366 (18)
N10.3573 (3)0.6969 (3)0.1973 (7)0.0464 (13)
N20.5953 (3)0.7481 (3)−0.0007 (6)0.0378 (11)
C10.1321 (3)0.5802 (3)0.3629 (7)0.0287 (12)
C20.2108 (3)0.6229 (3)0.3048 (7)0.0273 (11)
C30.2810 (3)0.5718 (4)0.2968 (8)0.0427 (15)
H80.28000.51140.32710.051*
C40.3527 (4)0.6105 (4)0.2436 (9)0.0523 (18)
H70.40000.57530.23970.063*
C50.2890 (3)0.7466 (4)0.2066 (9)0.0455 (16)
H110.29140.80700.17670.055*
C60.2147 (3)0.7121 (4)0.2589 (8)0.0378 (14)
H100.16810.74850.26300.045*
C70.6342 (3)0.6716 (4)−0.0395 (8)0.0438 (15)
H40.60760.6171−0.02210.053*
C80.7122 (3)0.6709 (4)−0.1041 (7)0.0340 (13)
H30.73720.6167−0.13150.041*
C90.7531 (3)0.7512 (3)−0.1281 (6)0.0199 (10)
C100.8387 (3)0.7511 (3)−0.1972 (6)0.0203 (10)
C110.7136 (3)0.8299 (3)−0.0871 (7)0.0309 (12)
H60.73940.8851−0.10180.037*
C120.6349 (3)0.8258 (4)−0.0237 (7)0.0359 (13)
H50.60850.87920.00400.043*
O10.0753 (2)0.6328 (2)0.4074 (5)0.0354 (9)
O20.1298 (2)0.4963 (2)0.3618 (5)0.0369 (9)
O30.85978 (19)0.6842 (2)−0.2806 (4)0.0276 (8)
O40.88366 (18)0.8187 (2)−0.1684 (4)0.0237 (7)
O1W0.9992 (2)0.7323 (2)0.0767 (5)0.0327 (9)
H1W1.017 (3)0.702 (3)0.001 (5)0.049*
H2W0.978 (3)0.697 (3)0.142 (5)0.049*
O61.0346 (2)0.8847 (2)0.3130 (4)0.0324 (8)
O51.0476 (2)1.0034 (2)0.1567 (4)0.0289 (8)
C131.0687 (3)0.9591 (3)0.2875 (6)0.0266 (11)
C141.1431 (13)0.9863 (19)0.395 (3)0.040 (4)0.51 (5)
H14A1.17281.03270.33850.059*0.51 (5)
H14B1.17850.93510.41290.059*0.51 (5)
H14C1.12551.00820.50240.059*0.51 (5)
C14'1.1264 (15)1.0028 (19)0.417 (3)0.040 (4)0.49 (5)
H14D1.11421.06590.42300.059*0.49 (5)
H14E1.18240.99470.38360.059*0.49 (5)
H14F1.11910.97560.52550.059*0.49 (5)
Cl10.58069 (12)0.04095 (12)0.7436 (3)0.0642 (5)0.526 (13)
O70.5433 (10)−0.0457 (8)0.742 (2)0.076 (5)0.526 (13)
O80.5249 (9)0.1082 (9)0.709 (2)0.133 (6)0.526 (13)
O90.6203 (10)0.0528 (9)0.9021 (14)0.109 (6)0.526 (13)
O100.6454 (9)0.0386 (10)0.6206 (19)0.134 (7)0.526 (13)
Cl1'0.58069 (12)0.04095 (12)0.7436 (3)0.0642 (5)0.474 (13)
O7'0.5399 (11)−0.0369 (9)0.691 (2)0.083 (7)0.474 (13)
O8'0.5676 (11)0.1101 (10)0.6227 (19)0.124 (7)0.474 (13)
O9'0.5422 (11)0.0751 (11)0.8943 (18)0.134 (7)0.474 (13)
O10'0.6643 (6)0.0289 (8)0.778 (2)0.092 (5)0.474 (13)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Er10.01467 (12)0.01458 (12)0.02167 (13)−0.00074 (8)0.00453 (8)0.00002 (8)
Ag10.0248 (2)0.0863 (4)0.0813 (4)−0.0136 (2)0.0248 (3)0.0023 (3)
N10.025 (2)0.047 (3)0.067 (4)−0.007 (2)0.017 (2)0.000 (3)
N20.021 (2)0.045 (3)0.048 (3)−0.003 (2)0.013 (2)0.000 (2)
C10.028 (3)0.020 (3)0.039 (3)−0.005 (2)0.012 (2)−0.003 (2)
C20.024 (3)0.028 (3)0.031 (3)−0.005 (2)0.009 (2)−0.003 (2)
C30.025 (3)0.029 (3)0.075 (5)0.002 (2)0.015 (3)0.001 (3)
C40.026 (3)0.048 (4)0.084 (5)0.004 (3)0.017 (3)0.000 (3)
C50.031 (3)0.036 (3)0.071 (5)−0.009 (3)0.016 (3)0.009 (3)
C60.027 (3)0.030 (3)0.058 (4)−0.001 (2)0.015 (3)0.005 (3)
C70.035 (3)0.036 (3)0.061 (4)−0.016 (3)0.012 (3)0.002 (3)
C80.029 (3)0.026 (3)0.048 (4)−0.003 (2)0.012 (3)−0.001 (2)
C90.016 (2)0.023 (3)0.020 (3)−0.0031 (19)0.0016 (19)−0.0025 (19)
C100.018 (2)0.023 (3)0.021 (3)0.0015 (19)0.0023 (19)0.002 (2)
C110.021 (2)0.026 (3)0.046 (3)−0.004 (2)0.010 (2)−0.001 (2)
C120.026 (3)0.035 (3)0.047 (4)0.007 (2)0.012 (3)0.002 (3)
O10.0258 (19)0.0208 (19)0.061 (3)−0.0007 (15)0.0249 (19)0.0012 (16)
O20.0296 (19)0.0196 (19)0.063 (3)−0.0016 (15)0.0227 (18)−0.0038 (17)
O30.0246 (17)0.0214 (18)0.037 (2)−0.0021 (14)0.0110 (16)−0.0082 (15)
O40.0179 (16)0.0250 (18)0.0283 (19)−0.0051 (14)0.0042 (14)−0.0058 (14)
O1W0.045 (2)0.0204 (18)0.034 (2)0.0068 (16)0.0164 (18)0.0022 (15)
O60.039 (2)0.033 (2)0.025 (2)−0.0065 (16)−0.0043 (16)0.0089 (15)
O50.0335 (19)0.0248 (18)0.028 (2)−0.0076 (15)−0.0089 (16)0.0043 (15)
C130.030 (3)0.023 (3)0.027 (3)−0.001 (2)−0.001 (2)0.000 (2)
C140.038 (6)0.042 (6)0.037 (5)−0.003 (5)−0.011 (5)0.000 (4)
C14'0.038 (6)0.042 (6)0.037 (5)−0.003 (5)−0.011 (5)0.000 (4)
Cl10.0638 (11)0.0528 (10)0.0756 (13)0.0017 (9)−0.0046 (10)−0.0013 (9)
O70.071 (8)0.070 (8)0.089 (9)−0.025 (6)0.001 (6)−0.009 (6)
O80.140 (10)0.104 (9)0.153 (11)0.074 (7)−0.032 (8)−0.019 (7)
O90.134 (10)0.110 (8)0.081 (8)−0.042 (7)−0.036 (7)0.001 (6)
O100.133 (10)0.143 (10)0.130 (10)−0.033 (8)0.052 (8)−0.008 (8)
Cl1'0.0638 (11)0.0528 (10)0.0756 (13)0.0017 (9)−0.0046 (10)−0.0013 (9)
O7'0.073 (9)0.081 (9)0.096 (10)−0.033 (7)0.011 (7)−0.034 (7)
O8'0.137 (11)0.121 (10)0.113 (10)−0.009 (8)−0.012 (8)0.056 (8)
O9'0.150 (11)0.138 (10)0.118 (10)0.017 (8)0.064 (8)−0.032 (8)
O10'0.054 (6)0.077 (7)0.144 (11)0.004 (5)−0.023 (7)0.009 (7)

Geometric parameters (Å, °)

Er1—O42.266 (3)C11—C121.386 (7)
Er1—O2i2.289 (3)C11—H60.9300
Er1—O1ii2.290 (3)C12—H50.9300
Er1—O3iii2.308 (3)O1—Er1v2.290 (3)
Er1—O5iv2.341 (3)O2—Er1vi2.289 (3)
Er1—O1W2.369 (3)O3—Er1vii2.308 (3)
Er1—O62.405 (3)O1W—H1W0.81 (4)
Er1—O52.454 (3)O1W—H2W0.82 (4)
Ag1—N12.153 (4)O6—C131.256 (6)
Ag1—N22.154 (4)O5—C131.263 (6)
N1—C51.336 (7)O5—Er1iv2.341 (3)
N1—C41.337 (8)C13—C141.507 (9)
N2—C121.335 (7)C13—C14'1.507 (10)
N2—C71.341 (7)C14—H14A0.9600
C1—O21.248 (6)C14—H14B0.9600
C1—O11.266 (6)C14—H14C0.9600
C1—C21.507 (6)C14'—H14D0.9600
C2—C31.370 (7)C14'—H14E0.9600
C2—C61.376 (7)C14'—H14F0.9600
C3—C41.374 (8)Cl1—O81.368 (9)
C3—H80.9300Cl1—O10'1.384 (8)
C4—H70.9300Cl1—O7'1.390 (9)
C5—C61.382 (7)Cl1—O91.399 (9)
C5—H110.9300Cl1—O8'1.414 (10)
C6—H100.9300Cl1—O71.423 (9)
C7—C81.376 (7)Cl1—O101.451 (9)
C7—H40.9300Cl1—O9'1.452 (10)
C8—C91.381 (7)O8—O8'0.988 (19)
C8—H30.9300O8—O9'1.557 (19)
C9—C111.378 (7)O9—O10'1.278 (15)
C9—C101.505 (6)O9—O9'1.307 (17)
C10—O31.246 (5)O10—O10'1.280 (17)
C10—O41.258 (5)O10—O8'1.650 (18)
O4—Er1—O2i104.11 (13)O4—C10—C9117.9 (4)
O4—Er1—O1ii90.06 (13)C9—C11—C12119.1 (5)
O2i—Er1—O1ii139.15 (12)C9—C11—H6120.4
O4—Er1—O3iii85.24 (12)C12—C11—H6120.4
O2i—Er1—O3iii73.96 (11)N2—C12—C11122.5 (5)
O1ii—Er1—O3iii146.30 (12)N2—C12—H5118.7
O4—Er1—O5iv77.04 (11)C11—C12—H5118.7
O2i—Er1—O5iv71.89 (13)C1—O1—Er1v134.9 (3)
O1ii—Er1—O5iv74.47 (12)C1—O2—Er1vi138.3 (3)
O3iii—Er1—O5iv135.93 (12)C10—O3—Er1vii148.8 (3)
O4—Er1—O1W78.85 (13)C10—O4—Er1139.3 (3)
O2i—Er1—O1W148.19 (12)Er1—O1W—H1W125 (4)
O1ii—Er1—O1W71.58 (12)Er1—O1W—H2W122 (4)
O3iii—Er1—O1W74.77 (12)H1W—O1W—H2W106 (4)
O5iv—Er1—O1W137.91 (12)C13—O6—Er195.3 (3)
O4—Er1—O6154.95 (12)C13—O5—Er1iv160.6 (3)
O2i—Er1—O692.59 (14)C13—O5—Er192.8 (3)
O1ii—Er1—O689.25 (14)Er1iv—O5—Er1106.35 (13)
O3iii—Er1—O681.55 (12)O6—C13—O5118.7 (4)
O5iv—Er1—O6126.62 (11)O6—C13—C14119.6 (11)
O1W—Er1—O677.18 (13)O5—C13—C14120.8 (11)
O4—Er1—O5149.53 (11)O6—C13—C14'122.6 (12)
O2i—Er1—O574.51 (12)O5—C13—C14'118.3 (12)
O1ii—Er1—O574.32 (12)O6—C13—Er158.3 (2)
O3iii—Er1—O5122.10 (12)O5—C13—Er160.6 (2)
O5iv—Er1—O573.65 (13)C14—C13—Er1167.2 (12)
O1W—Er1—O5118.73 (13)C14'—C13—Er1177.2 (13)
O6—Er1—O552.98 (11)C13—C14—H14A109.5
O4—Er1—C13169.94 (13)C13—C14—H14B109.5
O2i—Er1—C1383.95 (14)C13—C14—H14C109.5
O1ii—Er1—C1379.88 (14)C13—C14'—H14D109.5
O3iii—Er1—C13102.99 (13)C13—C14'—H14E109.5
O5iv—Er1—C13100.25 (13)H14D—C14'—H14E109.5
O1W—Er1—C1397.55 (14)C13—C14'—H14F109.5
O6—Er1—C1326.38 (13)H14D—C14'—H14F109.5
O5—Er1—C1326.64 (12)H14E—C14'—H14F109.5
O4—Er1—Er1iv114.47 (8)O8—Cl1—O10'140.3 (9)
O2i—Er1—Er1iv68.88 (8)O8—Cl1—O7'104.2 (12)
O1ii—Er1—Er1iv70.37 (8)O10'—Cl1—O7'113.8 (8)
O3iii—Er1—Er1iv141.06 (8)O8—Cl1—O9111.5 (8)
O5iv—Er1—Er1iv37.84 (8)O10'—Cl1—O954.6 (7)
O1W—Er1—Er1iv139.44 (9)O7'—Cl1—O9124.9 (10)
O6—Er1—Er1iv88.78 (8)O10'—Cl1—O8'110.7 (8)
O5—Er1—Er1iv35.81 (8)O7'—Cl1—O8'110.1 (9)
C13—Er1—Er1iv62.42 (10)O9—Cl1—O8'124.5 (9)
N1—Ag1—N2165.44 (19)O8—Cl1—O7112.4 (8)
C5—N1—C4117.6 (5)O10'—Cl1—O7107.3 (10)
C5—N1—Ag1126.0 (4)O9—Cl1—O7107.7 (8)
C4—N1—Ag1116.3 (4)O8'—Cl1—O7126.7 (10)
C12—N2—C7118.2 (4)O8—Cl1—O10111.8 (8)
C12—N2—Ag1123.0 (4)O10'—Cl1—O1053.6 (7)
C7—N2—Ag1118.8 (4)O7'—Cl1—O1097.3 (10)
O2—C1—O1126.7 (4)O9—Cl1—O10106.3 (7)
O2—C1—C2116.4 (4)O8'—Cl1—O1070.3 (8)
O1—C1—C2116.9 (4)O7—Cl1—O10106.7 (8)
C3—C2—C6118.5 (5)O8—Cl1—O9'66.9 (8)
C3—C2—C1119.4 (5)O10'—Cl1—O9'109.0 (8)
C6—C2—C1122.2 (5)O7'—Cl1—O9'108.9 (8)
C2—C3—C4119.5 (5)O9—Cl1—O9'54.5 (7)
C2—C3—H8120.2O8'—Cl1—O9'103.8 (8)
C4—C3—H8120.2O7—Cl1—O9'97.5 (10)
N1—C4—C3122.7 (5)O10—Cl1—O9'153.4 (9)
N1—C4—H7118.6O8'—O8—Cl171.7 (8)
C3—C4—H7118.6O8'—O8—O9'123.3 (13)
N1—C5—C6122.7 (5)Cl1—O8—O9'59.1 (6)
N1—C5—H11118.6O10'—O9—O9'126.6 (10)
C6—C5—H11118.6O10'—O9—Cl162.1 (6)
C2—C6—C5119.0 (5)O9'—O9—Cl164.8 (7)
C2—C6—H10120.5O10'—O10—Cl160.5 (6)
C5—C6—H10120.5O10'—O10—O8'102.8 (9)
N2—C7—C8122.2 (5)Cl1—O10—O8'53.8 (5)
N2—C7—H4118.9O8—O8'—Cl166.8 (8)
C8—C7—H4118.9O8—O8'—O10122.7 (11)
C7—C8—C9119.7 (5)Cl1—O8'—O1055.9 (6)
C7—C8—H3120.2O9—O9'—Cl160.7 (5)
C9—C8—H3120.2O9—O9'—O8105.7 (9)
C11—C9—C8118.2 (4)Cl1—O9'—O854.0 (5)
C11—C9—C10121.7 (4)O9—O10'—O10126.2 (10)
C8—C9—C10120.0 (4)O9—O10'—Cl163.3 (6)
O3—C10—O4124.5 (4)O10—O10'—Cl165.9 (6)
O3—C10—C9117.6 (4)

Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) x+1, −y+3/2, z−1/2; (iii) x, −y+3/2, z+1/2; (iv) −x+2, −y+2, −z; (v) x−1, −y+3/2, z+1/2; (vi) −x+1, y−1/2, −z+1/2; (vii) x, −y+3/2, z−1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H2W···O4iii0.82 (4)2.19 (3)2.891 (5)145 (5)
O1W—H1W···O6vii0.81 (4)1.99 (4)2.786 (5)167 (6)

Symmetry codes: (iii) x, −y+3/2, z+1/2; (vii) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2280).

References

  • Bruker (2004). APEX2 and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.
  • Cheng, J.-W., Zhang, J., Zheng, S.-T., Zhang, M.-B. & Yang, G.-Y. (2006). Angew. Chem. Int. Ed. 45, 73–77. [PubMed]
  • Kuang, D.-Z., Feng, Y.-L., Peng, Y.-L. & Deng, Y.-F. (2007). Acta Cryst. E63, m2526–m2527.
  • Peng, G., Qiu, Y.-C., Hu, Z.-H., Li, Y.-H., Liu, B. & Deng, H. (2008). Inorg. Chem. Commun. 11, 1409–1411.
  • Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zhu, L.-C., Zhao, Z.-G. & Yu, S.-J. (2009). Acta Cryst. E65, m1105. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography