PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): o3126.
Published online 2009 November 21. doi:  10.1107/S1600536809048442
PMCID: PMC2971895

(2R,3R)-3-(2-Chloro­phen­yl)-N-phenyl­oxirane-2-carboxamide

Abstract

In the title compound, C15H12ClNO2, the two benzene rings adopt a syn configuration with respect to the ep­oxy ring; the dihedral angles between the ep­oxy ring and the two benzene rings are 59.71 (16) and 67.58 (15)°. There is a weak intra­molecular N—H(...)O bond, which may help to establish the conformation. In the crystal, the mol­ecules are linked into a chain parallel to the b axis through inter­molecular N—H(...)O hydrogen bonds.

Related literature

For the use of epoxide-containing compounds as building blocks in the synthesis of biologically active compounds, see: Flisak et al. (1993 [triangle]); Porter & Skidmore (2000 [triangle]); Shing et al. (2006 [triangle]); Watanabe et al. (1998 [triangle]); Zhu & Espenson (1995 [triangle]). For the isostructuralbromo compound, 3-(2-bromo­phen­yl)-N-phenyl­oxirane-2-carboxamide, see: He et al. (2009 [triangle]). For related structures, see: He (2009 [triangle]); He & Chen (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o3126-scheme1.jpg

Experimental

Crystal data

  • C15H12ClNO2
  • M r = 273.71
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-o3126-efi3.jpg
  • a = 6.6610 (1) Å
  • b = 10.0343 (2) Å
  • c = 20.2433 (3) Å
  • V = 1353.03 (4) Å3
  • Z = 4
  • Cu Kα radiation
  • μ = 2.48 mm−1
  • T = 295 K
  • 0.36 × 0.32 × 0.30 mm

Data collection

  • Oxford Diffraction Gemini S Ultra diffractometer
  • Absorption correction: multi-scan (CrysAlis Pro; Oxford Diffraction, 2009 [triangle]) T min = 0.469, T max = 0.524
  • 9086 measured reflections
  • 2373 independent reflections
  • 2100 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031
  • wR(F 2) = 0.109
  • S = 1.20
  • 2373 reflections
  • 172 parameters
  • H-atom parameters constrained
  • Δρmax = 0.15 e Å−3
  • Δρmin = −0.26 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 864 Friedel pairs
  • Flack parameter: 0.01 (2)

Data collection: CrysAlis Pro (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis Pro; data reduction: CrysAlis Pro; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]), ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809048442/dn2512sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809048442/dn2512Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Testing Centre of Sichuan University for the diffraction measurements. We are grateful for financial support from China West Normal University (No. 412374).

supplementary crystallographic information

Comment

Optically active epoxides are highly useful intermediates as building blocks for the synthesis of biologically active compounds. They can be further transformed to key intermediates of several pharmaceutical products (Flisak et al. 1993; Porter & Skidmore, 2000; Watanabe et al. 1998; Shing et al., 2006). Various effective systems have been developed over the years for the preparation of chiral epoxides. The Darzens reaction, has proven to be one of the most powerful approaches (Zhu & Espenson,1995). We report herein the crystal structure of the title compound.

The title compound is isostructural of the related bromo compound, 3-(2-Bromophenyl)-N-phenyloxirane-2-carboxamide (He et al., 2009). The two phenyl rings adopt a syn configuration with respect to the epoxy ring (Fig. 1). The dihedral angle between the C1—C6 and C10—C15 is 76.27 (7)° and the O1/C7/C8 epoxide ring makes dihedral angles of 59.71 (16)° and 67.58 (15)° with C6 and C15 phenyl ring, respectively, These values are very similar to those observed in related structures (He, 2009; He & Chen, 2009; He et al., 2009).

There is a weak intramolecular N-H···O bond which might induce the observed conformation. The molecules are linked into a chain parallel to the b axis through intermolecular N-H···O hydrogen bonds (Table 1, Fig. 2).

Experimental

2-chloro-N-phenylacetamide (0.17 g, 1.0 mmol) and potassium hydroxide (0.112 g, 2.0 mmol) were dissolved in acetonitrile (4 ml). To the solution was added 2-chlorophenylaldehyde (0.14 g, 1.0 mmol) at 298 K, the solution was stirred for 2 h and removal of solvent under reduced pressure, the residue was purified through column chromatography. Colourless single crystals of (I) were obtained by recrystallization from an ethanol solution.

Refinement

All H atoms attached to C atoms and N atom were fixed geometrically and treated as riding with C—H = 0.93 Å and N—H = 0.86 Å with Uiso(H) = 1.2Ueq(C or N)

Figures

Fig. 1.
The molecular structure of (I) with the atom labeling scheme. Ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Intramolecular hydrogen bond is shown as dashed line.
Fig. 2.
Partial packing view showing the formation of infinite chain parallel to the b axis through N-H···O hydrogen bonds. H atoms not involved in hydrogen bondings have been omitted for clarity. H bonds are shown as dashed lines. [Symmetry ...

Crystal data

C15H12ClNO2F(000) = 568
Mr = 273.71Dx = 1.344 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2ac 2abCell parameters from 9390 reflections
a = 6.6610 (1) Åθ = 4.4–72.1°
b = 10.0343 (2) ŵ = 2.48 mm1
c = 20.2433 (3) ÅT = 295 K
V = 1353.03 (4) Å3Block, colourless
Z = 40.36 × 0.32 × 0.30 mm

Data collection

Oxford Diffraction Gemini S Ultra diffractometer2373 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source2100 reflections with I > 2σ(I)
mirrorRint = 0.026
Detector resolution: 15.9149 pixels mm-1θmax = 70.0°, θmin = 4.4°
ω scansh = −4→8
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009)k = −12→12
Tmin = 0.469, Tmax = 0.524l = −24→24
9086 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.109w = 1/[σ2(Fo2) + (0.0455P)2 + 0.2775P] where P = (Fo2 + 2Fc2)/3
S = 1.20(Δ/σ)max < 0.001
2373 reflectionsΔρmax = 0.15 e Å3
172 parametersΔρmin = −0.26 e Å3
0 restraintsAbsolute structure: Flack (1983), 864 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.01 (2)

Special details

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. CrysAlisPro (Oxford Diffraction, 2009)
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.4506 (5)1.0038 (3)0.44438 (13)0.0628 (7)
C20.2775 (5)1.0218 (3)0.48079 (15)0.0783 (9)
H20.25681.10090.50380.094*
C30.1355 (6)0.9220 (4)0.48286 (16)0.0815 (9)
H30.02000.93340.50800.098*
C40.1626 (5)0.8067 (3)0.44834 (16)0.0785 (8)
H40.06560.74010.44950.094*
C50.3367 (5)0.7894 (3)0.41138 (14)0.0673 (7)
H50.35470.71090.38770.081*
C60.4835 (4)0.8867 (2)0.40921 (12)0.0559 (6)
C70.6754 (4)0.8661 (3)0.37349 (13)0.0602 (6)
H70.79570.89310.39790.072*
C80.6969 (4)0.8680 (2)0.30113 (13)0.0571 (6)
H80.82810.89690.28450.069*
C90.5200 (4)0.9026 (2)0.25827 (12)0.0519 (5)
C100.2091 (4)0.8095 (2)0.20952 (11)0.0485 (5)
C110.0848 (4)0.7002 (2)0.21366 (14)0.0591 (6)
H110.12030.62880.24050.071*
C12−0.0942 (5)0.6958 (3)0.17779 (15)0.0719 (8)
H12−0.17690.62130.18030.086*
C13−0.1475 (5)0.8020 (3)0.13874 (14)0.0737 (8)
H13−0.26550.79930.11420.088*
C14−0.0262 (5)0.9114 (3)0.13617 (14)0.0734 (8)
H14−0.06520.98400.11060.088*
C150.1546 (5)0.9176 (3)0.17082 (13)0.0618 (6)
H150.23660.99240.16800.074*
Cl10.63034 (15)1.12873 (8)0.44179 (4)0.0905 (3)
N10.3914 (3)0.80345 (18)0.24575 (10)0.0524 (5)
H10.42290.72670.26160.063*
O10.6959 (3)0.74497 (17)0.33669 (10)0.0666 (5)
O20.5063 (3)1.01692 (16)0.23815 (11)0.0732 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0775 (18)0.0568 (13)0.0540 (12)0.0057 (14)−0.0038 (13)0.0006 (12)
C20.100 (2)0.0729 (19)0.0619 (15)0.0152 (19)0.0041 (16)−0.0041 (14)
C30.074 (2)0.098 (2)0.0730 (17)0.004 (2)0.0099 (16)0.0101 (17)
C40.076 (2)0.082 (2)0.0773 (18)−0.0094 (18)−0.0062 (17)0.0141 (17)
C50.0738 (19)0.0615 (15)0.0667 (15)−0.0019 (15)−0.0138 (15)0.0035 (13)
C60.0609 (15)0.0507 (12)0.0561 (12)0.0041 (13)−0.0142 (11)0.0003 (11)
C70.0592 (16)0.0489 (12)0.0725 (14)0.0062 (13)−0.0135 (12)−0.0100 (12)
C80.0577 (15)0.0389 (11)0.0748 (15)0.0054 (12)−0.0031 (12)−0.0085 (11)
C90.0551 (14)0.0364 (10)0.0640 (13)−0.0004 (11)−0.0007 (11)−0.0090 (10)
C100.0525 (14)0.0422 (11)0.0508 (11)−0.0012 (11)0.0024 (10)−0.0061 (10)
C110.0620 (16)0.0448 (12)0.0704 (14)−0.0027 (12)0.0007 (12)−0.0039 (11)
C120.0711 (19)0.0627 (16)0.0817 (18)−0.0081 (15)0.0004 (15)−0.0113 (14)
C130.0618 (17)0.089 (2)0.0700 (16)−0.0041 (18)−0.0101 (14)−0.0109 (15)
C140.0758 (19)0.0778 (18)0.0666 (15)0.0019 (17)−0.0127 (14)0.0110 (14)
C150.0706 (17)0.0517 (13)0.0630 (13)−0.0048 (13)−0.0055 (13)0.0068 (12)
Cl10.1070 (7)0.0629 (4)0.1016 (5)−0.0142 (5)0.0117 (5)−0.0220 (4)
N10.0576 (12)0.0362 (8)0.0632 (11)0.0002 (9)−0.0047 (9)0.0007 (8)
O10.0723 (12)0.0446 (9)0.0830 (12)0.0140 (9)−0.0153 (10)−0.0070 (9)
O20.0799 (13)0.0359 (8)0.1039 (14)−0.0044 (9)−0.0200 (11)0.0020 (9)

Geometric parameters (Å, °)

C1—C21.381 (4)C8—H80.9800
C1—C61.391 (3)C9—O21.221 (3)
C1—Cl11.734 (3)C9—N11.337 (3)
C2—C31.378 (5)C10—C111.377 (3)
C2—H20.9300C10—C151.387 (4)
C3—C41.364 (5)C10—N11.420 (3)
C3—H30.9300C11—C121.397 (4)
C4—C51.391 (5)C11—H110.9300
C4—H40.9300C12—C131.374 (4)
C5—C61.383 (4)C12—H120.9300
C5—H50.9300C13—C141.364 (4)
C6—C71.483 (4)C13—H130.9300
C7—O11.432 (3)C14—C151.395 (4)
C7—C81.472 (4)C14—H140.9300
C7—H70.9800C15—H150.9300
C8—O11.429 (3)N1—H10.8600
C8—C91.504 (4)
C2—C1—C6121.0 (3)C7—C8—H8115.6
C2—C1—Cl1119.9 (2)C9—C8—H8115.6
C6—C1—Cl1119.1 (2)O2—C9—N1126.0 (2)
C3—C2—C1119.6 (3)O2—C9—C8117.9 (2)
C3—C2—H2120.2N1—C9—C8116.1 (2)
C1—C2—H2120.2C11—C10—C15120.0 (2)
C4—C3—C2120.7 (3)C11—C10—N1116.7 (2)
C4—C3—H3119.7C15—C10—N1123.3 (2)
C2—C3—H3119.7C10—C11—C12120.5 (3)
C3—C4—C5119.5 (3)C10—C11—H11119.8
C3—C4—H4120.3C12—C11—H11119.8
C5—C4—H4120.3C13—C12—C11119.7 (3)
C6—C5—C4121.2 (3)C13—C12—H12120.1
C6—C5—H5119.4C11—C12—H12120.1
C4—C5—H5119.4C14—C13—C12119.6 (3)
C5—C6—C1118.0 (3)C14—C13—H13120.2
C5—C6—C7121.7 (2)C12—C13—H13120.2
C1—C6—C7120.2 (2)C13—C14—C15121.9 (3)
O1—C7—C858.96 (16)C13—C14—H14119.1
O1—C7—C6117.0 (2)C15—C14—H14119.1
C8—C7—C6124.5 (2)C10—C15—C14118.4 (3)
O1—C7—H7114.8C10—C15—H15120.8
C8—C7—H7114.8C14—C15—H15120.8
C6—C7—H7114.8C9—N1—C10127.89 (19)
O1—C8—C759.12 (16)C9—N1—H1116.1
O1—C8—C9119.1 (2)C10—N1—H1116.1
C7—C8—C9120.1 (2)C8—O1—C761.92 (15)
O1—C8—H8115.6

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O10.862.382.801 (3)111
N1—H1···O2i0.862.162.973 (2)158

Symmetry codes: (i) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2512).

References

  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Flisak, J. R., Gombatz, K. J., Holmes, M. M., Jarmas, A. A., Lantos, I., Mendelson, W. L., Novack, V. J., Remich, J. J. & Snyder, L. (1993). J. Org. Chem. 58, 6247–6254.
  • He, L. (2009). Acta Cryst. E65, o2052. [PMC free article] [PubMed]
  • He, L. & Chen, L.-M. (2009). Acta Cryst. E65, o2976. [PMC free article] [PubMed]
  • He, L., Qin, H.-M. & Chen, L.-M. (2009). Acta Cryst. E65, o2999. [PMC free article] [PubMed]
  • Oxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England.
  • Porter, M. J. & Skidmore, J. (2000). Chem. Commun. pp. 1215–1225.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shing, T. K. M., Luk, T. & Lee, C. M. (2006). Tetrahedron, 62, 6621–6629.
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Watanabe, S., Arai, T., Sasai, H., Bougauchi, M. & Shibasaki, M. (1998). J. Org. Chem. 63, 8090–8091.
  • Zhu, Z. L. & Espenson, J. H. (1995). J. Org. Chem. 60, 7090–7091.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography