PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): m1613.
Published online 2009 November 21. doi:  10.1107/S1600536809048697
PMCID: PMC2971894

Tetra­kis(μ2-phenyl­acetato-κ2 O:O′)bis­[(isoquinoline-κN)copper(II)]

Abstract

In the title centrosymmetric binuclear CuII complex, [Cu2(C8H7O2)4(C9H7N)2], the two Cu cations are bridged by four carboxyl­ate groups of the phenyl­acetate anions; each Cu cation is further coordinated by an isoquinoline ligand to complete the distorted CuO4N square-pyramidal geometry. The Cu cation is displaced by 0.2092 (8) Å from the basal plane formed by the four O atoms. Within the dinuclear mol­ecule, the Cu(...)Cu separation is 2.6453 (6) Å. Although a parallel, overlapped arrangement of isoquinoline ligands exists in the crystal structure; the longer face-to-face distance of 3.667 (5) Å suggests there is no π–π stacking between isoquinoline ring systems.

Related literature

For general background to π–π stacking, see: Su & Xu (2004 [triangle]); Xu et al. (2007 [triangle]). For a related isoquinoline complex, see: Li et al. (2009 [triangle]). For Cu(...)Cu separations in multi-nuclear CuII complexes, see: Li et al. (2007 [triangle], 2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1613-scheme1.jpg

Experimental

Crystal data

  • [Cu2(C8H7O2)4(C9H7N)2]
  • M r = 925.94
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1613-efi1.jpg
  • a = 8.2425 (15) Å
  • b = 11.251 (2) Å
  • c = 12.121 (2) Å
  • α = 94.594 (2)°
  • β = 90.178 (2)°
  • γ = 104.803 (4)°
  • V = 1082.9 (3) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 1.04 mm−1
  • T = 294 K
  • 0.26 × 0.22 × 0.16 mm

Data collection

  • Rigaku R-AXIS RAPID IP diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.835, T max = 0.920
  • 11731 measured reflections
  • 3837 independent reflections
  • 3409 reflections with I > 2σ(I)
  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032
  • wR(F 2) = 0.088
  • S = 1.09
  • 3837 reflections
  • 280 parameters
  • H-atom parameters constrained
  • Δρmax = 0.29 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998 [triangle]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002 [triangle]); program(s) used to solve structure: SIR92 (Altomare et al., 1993 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Selected bond lengths (Å)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809048697/ng2685sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809048697/ng2685Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the ZIJIN project of Zhejiang University, China.

supplementary crystallographic information

Comment

As part of our ongoing investigation on the nature of π-π stacking (Su & Xu, 2004; Xu et al., 2007), the title complex incorporating isoquinoline ligand has recently been prepared in the laboratory and its crystal structure is reported here.

The molecular structure is shown in Fig. 1. Four phenylacetate anions bridge two CuII cations to form the centro-symmetric complex. Within the dinuclear molecule the Cu···Cu separation of 2.6453 (6) Å is consistent with 2.646 Å found in a related binucealr CuII complex bridged by acetate anions (Li et al., 2009) and 2.642 Å found in a polymeric CuII complex bridged by thiourea (Li et al. 2007). The CuII cation is coordinated by four carboxyl-O atoms from phenylacetate anions in the basal plane, an isoquinoline molecule further coordinates to the CuII cation in the apical position to complete the distorted square-pyramidal coordination geometry; the CuII cation is 0.2092 (8) Å deviated from the basal coordination plane.

The parallel, overlaped arrangement of isoquinoline ligands of adjacent complexes is observed in the crystal structure (Fig. 2). The face-to-face distance of 3.667 (5) Å suggests no π-π stacking between isoquinoline ring systems in the crystal structure.

Experimental

Isoquinoline (0.23 ml, 2 mmol), copper dicholoride dihydrate (0.17 g, 1 mmol) and 2-phenylacetic acid (0.27 g, 2 mmol) were dissolved in ethanol (10 ml) at room temperature. The single crystals of the title compound were obtained from the solution after 2 d.

Refinement

H atoms were placed in calculated positions with C—H = 0.93 (aromatic) and 0.97 Å (methylene) and refined in riding mode with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title compound with 30% probability displacement ellipsoids (arbitrary spheres for H atoms) [symmetry code: (i) 1 - x, 1 - y, 1 - z].
Fig. 2.
The unit cell packing diagram showing the parallel arrangement of isoquinoline ligands. H atoms have been omitted for clarity.

Crystal data

[Cu2(C8H7O2)4(C9H7N)2]Z = 1
Mr = 925.94F(000) = 478
Triclinic, P1Dx = 1.420 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.2425 (15) ÅCell parameters from 5268 reflections
b = 11.251 (2) Åθ = 2.0–25.0°
c = 12.121 (2) ŵ = 1.04 mm1
α = 94.594 (2)°T = 294 K
β = 90.178 (2)°Prism, blue
γ = 104.803 (4)°0.26 × 0.22 × 0.16 mm
V = 1082.9 (3) Å3

Data collection

Rigaku R-AXIS RAPID IP diffractometer3837 independent reflections
Radiation source: fine-focus sealed tube3409 reflections with I > 2σ(I)
graphiteRint = 0.025
Detector resolution: 10.0 pixels mm-1θmax = 25.2°, θmin = 1.7°
ω scansh = −9→9
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)k = −13→12
Tmin = 0.835, Tmax = 0.920l = −14→14
11731 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.09w = 1/[σ2(Fo2) + (0.0476P)2 + 0.2372P] where P = (Fo2 + 2Fc2)/3
3837 reflections(Δ/σ)max < 0.001
280 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = −0.20 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu0.44020 (3)0.49777 (2)0.39826 (2)0.03660 (11)
N10.3604 (2)0.47759 (17)0.22703 (15)0.0433 (4)
O10.3102 (2)0.32991 (15)0.42744 (15)0.0580 (5)
O20.4167 (2)0.33169 (14)0.59722 (14)0.0526 (4)
O30.6366 (2)0.43173 (17)0.36405 (14)0.0546 (4)
O40.7375 (2)0.43275 (17)0.53476 (14)0.0522 (4)
C10.3214 (3)0.2823 (2)0.5162 (2)0.0447 (5)
C20.2087 (4)0.1536 (2)0.5287 (2)0.0581 (7)
H2A0.24510.12280.59450.070*
H2B0.09480.16030.54030.070*
C30.2070 (3)0.0608 (2)0.4318 (2)0.0446 (5)
C40.1314 (3)0.0679 (2)0.3319 (2)0.0582 (7)
H40.08160.13210.32290.070*
C50.1289 (4)−0.0202 (3)0.2444 (3)0.0727 (9)
H50.0783−0.01430.17710.087*
C60.2001 (5)−0.1151 (3)0.2565 (3)0.0766 (9)
H60.1963−0.17460.19800.092*
C70.2763 (4)−0.1229 (3)0.3536 (3)0.0795 (9)
H70.3270−0.18680.36150.095*
C80.2788 (4)−0.0355 (2)0.4415 (2)0.0611 (7)
H80.3302−0.04220.50830.073*
C90.7351 (3)0.4067 (2)0.4323 (2)0.0436 (5)
C100.8640 (3)0.3418 (3)0.3878 (2)0.0595 (7)
H10A0.96730.40360.37640.071*
H10B0.88740.29070.44340.071*
C110.8137 (3)0.2622 (2)0.2810 (2)0.0457 (5)
C120.9175 (3)0.2738 (3)0.1913 (2)0.0567 (6)
H121.01900.33390.19600.068*
C130.8745 (4)0.1989 (3)0.0954 (2)0.0694 (8)
H130.94710.20840.03630.083*
C140.7261 (4)0.1106 (3)0.0860 (3)0.0748 (9)
H140.69680.06020.02060.090*
C150.6204 (4)0.0969 (3)0.1739 (3)0.0755 (9)
H150.51940.03630.16810.091*
C160.6622 (3)0.1718 (3)0.2706 (2)0.0611 (7)
H160.58880.16200.32930.073*
C210.3704 (3)0.3795 (2)0.1640 (2)0.0500 (6)
H210.41250.32050.19560.060*
C220.3277 (5)0.2486 (3)−0.0130 (3)0.0854 (10)
H220.36570.18770.01850.103*
C230.2778 (5)0.2338 (4)−0.1212 (3)0.0947 (12)
H230.28350.1626−0.16400.114*
C240.2186 (4)0.3226 (4)−0.1690 (2)0.0805 (10)
H240.18460.3101−0.24320.097*
C250.2095 (4)0.4268 (3)−0.1096 (2)0.0751 (9)
H250.17000.4859−0.14290.090*
C260.2524 (5)0.5517 (3)0.0722 (3)0.0869 (11)
H260.21340.61390.04370.104*
C270.3021 (4)0.5620 (3)0.1800 (2)0.0718 (9)
H270.29500.63220.22380.086*
C280.3213 (3)0.3581 (2)0.0513 (2)0.0489 (6)
C290.2602 (3)0.4467 (2)0.0038 (2)0.0536 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu0.03901 (17)0.03174 (16)0.03687 (17)0.00689 (11)−0.00402 (11)−0.00272 (11)
N10.0469 (11)0.0393 (10)0.0415 (10)0.0094 (8)−0.0075 (8)−0.0036 (8)
O10.0681 (12)0.0368 (9)0.0580 (11)−0.0062 (8)−0.0115 (9)0.0023 (8)
O20.0614 (10)0.0383 (9)0.0497 (10)−0.0013 (8)−0.0008 (8)0.0000 (7)
O30.0567 (10)0.0683 (12)0.0473 (9)0.0337 (9)−0.0039 (8)−0.0028 (8)
O40.0468 (9)0.0653 (11)0.0480 (10)0.0235 (8)−0.0053 (7)−0.0045 (8)
C10.0449 (13)0.0322 (12)0.0524 (14)0.0036 (9)0.0086 (11)−0.0029 (10)
C20.0658 (17)0.0384 (13)0.0590 (16)−0.0058 (12)0.0118 (13)−0.0005 (11)
C30.0421 (12)0.0291 (11)0.0561 (14)−0.0025 (9)0.0011 (10)0.0031 (10)
C40.0609 (16)0.0425 (14)0.0711 (18)0.0131 (12)−0.0118 (13)0.0048 (12)
C50.089 (2)0.0604 (18)0.0603 (18)0.0047 (16)−0.0197 (15)−0.0001 (14)
C60.106 (3)0.0479 (17)0.071 (2)0.0156 (16)−0.0005 (18)−0.0126 (14)
C70.099 (2)0.0492 (17)0.097 (3)0.0351 (16)−0.003 (2)−0.0036 (16)
C80.0664 (17)0.0503 (15)0.0655 (17)0.0126 (13)−0.0117 (14)0.0063 (13)
C90.0373 (12)0.0417 (12)0.0502 (14)0.0092 (9)−0.0029 (10)−0.0028 (10)
C100.0443 (14)0.0792 (19)0.0599 (16)0.0298 (13)−0.0072 (12)−0.0107 (14)
C110.0401 (12)0.0482 (13)0.0538 (14)0.0212 (10)0.0012 (10)0.0025 (11)
C120.0448 (14)0.0590 (16)0.0663 (17)0.0135 (12)0.0083 (12)0.0051 (13)
C130.076 (2)0.079 (2)0.0561 (17)0.0257 (16)0.0143 (14)0.0014 (15)
C140.086 (2)0.069 (2)0.0677 (19)0.0227 (17)−0.0061 (17)−0.0147 (16)
C150.0661 (19)0.0560 (17)0.094 (2)0.0008 (14)−0.0056 (17)−0.0070 (16)
C160.0541 (16)0.0623 (17)0.0662 (17)0.0135 (13)0.0112 (13)0.0056 (14)
C210.0524 (14)0.0541 (15)0.0463 (13)0.0216 (11)−0.0097 (11)−0.0038 (11)
C220.105 (3)0.097 (3)0.0634 (19)0.054 (2)−0.0140 (17)−0.0290 (18)
C230.104 (3)0.122 (3)0.059 (2)0.044 (2)−0.0057 (18)−0.039 (2)
C240.079 (2)0.115 (3)0.0360 (15)0.008 (2)0.0016 (14)−0.0062 (17)
C250.091 (2)0.084 (2)0.0436 (15)0.0073 (17)−0.0106 (14)0.0131 (15)
C260.147 (3)0.0507 (17)0.070 (2)0.0390 (19)−0.039 (2)0.0039 (15)
C270.116 (3)0.0440 (15)0.0592 (17)0.0326 (16)−0.0282 (16)−0.0103 (13)
C280.0417 (13)0.0595 (15)0.0432 (13)0.0121 (11)−0.0005 (10)−0.0062 (11)
C290.0570 (15)0.0552 (15)0.0424 (13)0.0026 (12)−0.0036 (11)0.0066 (11)

Geometric parameters (Å, °)

Cu—O11.9786 (16)C10—C111.507 (3)
Cu—O2i1.9754 (16)C10—H10A0.9700
Cu—O31.9785 (17)C10—H10B0.9700
Cu—O4i1.9761 (17)C11—C121.379 (3)
Cu—N12.1522 (18)C11—C161.393 (3)
Cu—Cui2.6453 (6)C12—C131.369 (4)
N1—C211.312 (3)C12—H120.9300
N1—C271.333 (3)C13—C141.362 (4)
O1—C11.253 (3)C13—H130.9300
O2—C11.255 (3)C14—C151.372 (4)
O2—Cui1.9754 (16)C14—H140.9300
O3—C91.254 (3)C15—C161.376 (4)
O4—C91.252 (3)C15—H150.9300
O4—Cui1.9761 (17)C16—H160.9300
C1—C21.527 (3)C21—C281.407 (3)
C2—C31.506 (3)C21—H210.9300
C2—H2A0.9700C22—C231.358 (5)
C2—H2B0.9700C22—C281.417 (4)
C3—C81.373 (4)C22—H220.9300
C3—C41.378 (4)C23—C241.383 (5)
C4—C51.388 (4)C23—H230.9300
C4—H40.9300C24—C251.345 (5)
C5—C61.360 (5)C24—H240.9300
C5—H50.9300C25—C291.419 (4)
C6—C71.352 (5)C25—H250.9300
C6—H60.9300C26—C271.356 (4)
C7—C81.387 (4)C26—C291.403 (4)
C7—H70.9300C26—H260.9300
C8—H80.9300C27—H270.9300
C9—C101.513 (3)C28—C291.388 (4)
O2i—Cu—O4i87.53 (8)C11—C10—C9115.1 (2)
O2i—Cu—O1167.83 (7)C11—C10—H10A108.5
O4i—Cu—O190.12 (8)C9—C10—H10A108.5
O2i—Cu—O390.58 (8)C11—C10—H10B108.5
O4i—Cu—O3167.78 (7)C9—C10—H10B108.5
O1—Cu—O389.19 (8)H10A—C10—H10B107.5
O2i—Cu—N198.20 (7)C12—C11—C16117.7 (2)
O4i—Cu—N199.69 (7)C12—C11—C10121.4 (2)
O1—Cu—N193.96 (7)C16—C11—C10120.9 (2)
O3—Cu—N192.53 (7)C13—C12—C11121.5 (2)
O2i—Cu—Cui84.42 (5)C13—C12—H12119.2
O4i—Cu—Cui87.03 (5)C11—C12—H12119.2
O1—Cu—Cui83.53 (5)C14—C13—C12120.5 (3)
O3—Cu—Cui80.77 (5)C14—C13—H13119.8
N1—Cu—Cui172.85 (5)C12—C13—H13119.8
C21—N1—C27117.3 (2)C13—C14—C15119.3 (3)
C21—N1—Cu119.82 (16)C13—C14—H14120.3
C27—N1—Cu122.90 (16)C15—C14—H14120.3
C1—O1—Cu123.63 (14)C14—C15—C16120.7 (3)
C1—O2—Cui122.64 (16)C14—C15—H15119.6
C9—O3—Cu126.83 (16)C16—C15—H15119.6
C9—O4—Cui119.64 (15)C15—C16—C11120.3 (3)
O1—C1—O2125.7 (2)C15—C16—H16119.8
O1—C1—C2117.9 (2)C11—C16—H16119.8
O2—C1—C2116.4 (2)N1—C21—C28124.0 (2)
C3—C2—C1114.8 (2)N1—C21—H21118.0
C3—C2—H2A108.6C28—C21—H21118.0
C1—C2—H2A108.6C23—C22—C28119.2 (3)
C3—C2—H2B108.6C23—C22—H22120.4
C1—C2—H2B108.6C28—C22—H22120.4
H2A—C2—H2B107.5C22—C23—C24121.2 (3)
C8—C3—C4117.9 (2)C22—C23—H23119.4
C8—C3—C2120.5 (2)C24—C23—H23119.4
C4—C3—C2121.6 (2)C25—C24—C23120.8 (3)
C3—C4—C5120.4 (3)C25—C24—H24119.6
C3—C4—H4119.8C23—C24—H24119.6
C5—C4—H4119.8C24—C25—C29120.2 (3)
C6—C5—C4120.5 (3)C24—C25—H25119.9
C6—C5—H5119.8C29—C25—H25119.9
C4—C5—H5119.8C27—C26—C29119.7 (3)
C7—C6—C5119.9 (3)C27—C26—H26120.2
C7—C6—H6120.0C29—C26—H26120.2
C5—C6—H6120.0N1—C27—C26123.9 (3)
C6—C7—C8119.9 (3)N1—C27—H27118.1
C6—C7—H7120.0C26—C27—H27118.1
C8—C7—H7120.0C29—C28—C21118.0 (2)
C3—C8—C7121.3 (3)C29—C28—C22119.6 (2)
C3—C8—H8119.3C21—C28—C22122.3 (3)
C7—C8—H8119.3C28—C29—C26117.2 (2)
O4—C9—O3125.3 (2)C28—C29—C25118.9 (3)
O4—C9—C10116.9 (2)C26—C29—C25123.9 (3)
O3—C9—C10117.8 (2)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2685).

References

  • Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
  • Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  • Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
  • Li, M.-J., Nie, J.-J. & Xu, D.-J. (2009). Acta Cryst. E65, m881. [PMC free article] [PubMed]
  • Li, D.-X., Xu, D.-J. & Xu, Y.-Z. (2007). J. Coord. Chem. 60, 2687–2694.
  • Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Su, J.-R. & Xu, D.-J. (2004). J. Coord. Chem. 57, 223–229.
  • Xu, D.-J., Zhang, B.-Y., Su, J.-R. & Nie, J.-J. (2007). Acta Cryst. C63, m622–m624. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography