PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): m1696.
Published online 2009 November 28. doi:  10.1107/S1600536809050156
PMCID: PMC2971893

Bis(η2-ethyl­ene)[aza­nidediylbis(diiso­propyl­phosphine selenide)-κ2 Se,Se′]iridium(III)

Abstract

In the title compound, [Ir(η2-C2H4)2(C12H28NP2Se2)], the central Ir atom is chelated by the [N(iPr2PSe)2] ligand via two Se atoms and is coordinated by two η2-ethyl­ene mol­ecules via four C atoms in an octa­hedral coordination geometry.

Related literature

For studies of complexes containing [N(R 2PQ)2] (Q = S, Se, Te) ligands, see: Ly & Woollins (1998 [triangle]); Rudler et al. (1997 [triangle]). For metal complexes with [N(R 2PQ)2] (Q = S, Se, Te) as NMR shift reagents, see: Barkaoui et al. (1997 [triangle]). For related structures, see: Cheung et al. (2006 [triangle]); Kirchmann et al. (2008 [triangle]); Lundquist et al. (1990 [triangle]); Parr et al. (1999 [triangle]). For the C—C bond length in free ethyl­ene, see: Stoicheff (1962 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1696-scheme1.jpg

Experimental

Crystal data

  • [Ir(C2H4)2(C12H28NP2Se2)]
  • M r = 654.52
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1696-efi1.jpg
  • a = 9.6965 (1) Å
  • b = 10.3962 (1) Å
  • c = 12.0620 (1) Å
  • α = 98.511 (1)°
  • β = 96.055 (1)°
  • γ = 107.273 (1)°
  • V = 1133.84 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 9.24 mm−1
  • T = 296 K
  • 0.30 × 0.21 × 0.16 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.168, T max = 0.320
  • 15331 measured reflections
  • 5170 independent reflections
  • 4505 reflections with I > 2σ(I)
  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028
  • wR(F 2) = 0.067
  • S = 1.03
  • 5170 reflections
  • 207 parameters
  • H-atom parameters constrained
  • Δρmax = 1.39 e Å−3
  • Δρmin = −1.03 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT-Plus (Bruker, 1998 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809050156/ng2681sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809050156/ng2681Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This project was supported by the Program for New Century Excellent Talents in Universities of China (NCET-06–0556 and NCET-08–0618).

supplementary crystallographic information

Comment

Imidotetraaryldichalcogenodiphosphinates of general formula [N(R2PQ)2]- (Q = S, Se, Te) have a well defined coordination chemistry, with examples of simple complexes known for elements from each block of the periodic table (Ly & Woollins, 1998). Metal complexes with [N(R2PQ)2]- have been used as catalysts for organic reactions (Rudler et al., 1997) and NMR shift reagents (Barkaoui et al., 1997). Despite the high affinity of [N(R2PQ)2]- for late transition metal ions, their complexes with iridium have not been well explored. The only structurally characterized iridium imidotetraaryldichalcogenodiphosphinates are the half-sandwich complexes [Cp*Ir{N(R2PQ)2}X] (X = Cl, SCN, SeCN) (Parr et al., 1999). To explore the organometallic chemistry of imidotetraaryldichalcogenodiphosphinates, we are interested to synthesize organoiridium compounds with [N(R2PQ)2]- ligands. We have previously reported the syntheses and crystal structures of iridium imidotetraaryldithiodiphosphinates compounds containing carbonyl, 1,5-cyclooctadiene, and olefin co-ligands (Cheung et al., 2006). We herein describe molecular structure of an organoiridium compound [Ir{N(iPr2PSe)2}(η2-C2H4)2] with imido-tetra-iso-propyldiselenodiphosphinate and ethylene ligands in this paper.

The title compound crystallizes in the triclinic space group P-1. The molecular structure with atomic numbering is depicted in Fig. 1. The central iridium atom is hexacoordinated by one chelating [N(iPr2PSe)2]- ligand via two selenium atoms and two η2-ethylene molecules via four carbon atoms, thereby forming a distorded octahedral environment. The [N(iPr2PSe)2]- acts as a chelating ligand through its two selenium atoms to bond the iridium center in a cis geometry. Similar to analogue complexes [Ir{N(iPr2PS)2}(η2-C2H4)2] and [Ir{N(Ph2PS)2}(η2-COE)2] (COE = cyclooctene) with imido-tetra-iso-propyldiselenodiphosphinate ligands (Cheung et al., 2006), the conformation of the six-membered IrSe2P2N ring in the title compound is described as a twisted-boat imposed by the non-parallel orientation of the two P—Se bonds. The bite angle of Se(1)—Ir(1)—Se(2) is 99.332 (16)°, the other angles in the chelate ring are Ir(1)—Se(1)—P(1) 109.29 (3)°, Ir(1)—Se(2)—P(2) 110.38 (3)°, Se(1)—P(1)—N(1) 116.89 (14)°, Se(2)—P(2)—N(1) 116.88 (13)°, and P(1)—N(1)—P(2) 127.3 (2)°. The average Ir—Se bond length (av. 2.4601 (5) Å) in the title compound is slightly longer than those in [Cp*Ir{N(Ph2PSe)2}Cl] (av. 2.5139 (5) Å) (Parr et al., 1999) and [Cp*Ir{N(Ph2PSe)2}(SCN)] (av. 2.5159 (8) Å) (Parr et al., 1999). The ethylene molecules bind to the central iridium atom in an η2-coordination mode with the small bite angles C(1)—Ir(1)—C(2) and C(1)—Ir(1)—C(2) of 38.1 (2) and 38.4 (2)°, respectively. The average C—C bond length in the title compound (av. 1.398 (9) Å) is longer than that in free ethylene (1.339 Å) (Stoicheff, 1962), but compares with corresponding bond lengths in [Ir{N(iPr2PS)2}(η2-C2H4)2] (av. 1.400 (6) Å) (Cheung et al., 2006), [Ir(PMe2Ph)32-C2H4)2][BF4] (av. 1.42 (2) Å) (Lundquist et al., 1990) and [Me4N][Ir(SnB11H11)(CO)(η2-C2H4)(PPh3)2] (av. 1.44 (3) Å) (Kirchmann et al., 2008). The average Ir—C bond length in the title compound (av. 2.133 (5) Å) compares well with those in [Ir{N(iPr2PS)2}(η2-C2H4)2] (av. 2.124 (5) Å) (Cheung et al., 2006), [Ir(PMe2Ph)32-C2H4)2][BF4] (av. 2.20 (3) Å) (Lundquist et al., 1990) and [Me4N][Ir(SnB11H11)(CO)(η2-C2H4)(PPh3)2] (av. 2.22 (2) Å) (Kirchmann et al., 2008).

Experimental

The title compound was prepared according to the literature method (Cheung et al., 2006) and similarly as for [Ir{N(iPr2PS)2}(η2-C2H4)2] using K[N(iPr2PSe)2] instead of K[N(iPr2PS)2]. Orange single crystals of the title compound were obtained from the hexane solution at -40 °C.

Refinement

H atoms were positioned geometrically and refined using a riding model (including free rotation about the ethanol C—C bond), with C—H = 0.95–0.99 Å and with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C).

Figures

Fig. 1.
The structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids at the 50% probability level.

Crystal data

[Ir(C2H4)2(C12H28NP2Se2)]Z = 2
Mr = 654.52F(000) = 628
Triclinic, P1Dx = 1.917 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.6965 (1) ÅCell parameters from 6523 reflections
b = 10.3962 (1) Åθ = 2.5–26.8°
c = 12.0620 (1) ŵ = 9.24 mm1
α = 98.511 (1)°T = 296 K
β = 96.055 (1)°Prism, orange
γ = 107.273 (1)°0.30 × 0.21 × 0.16 mm
V = 1133.84 (2) Å3

Data collection

Bruker SMART CCD area-detector diffractometer5170 independent reflections
Radiation source: fine-focus sealed tube4505 reflections with I > 2σ(I)
graphiteRint = 0.024
phi and ω scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −12→11
Tmin = 0.168, Tmax = 0.320k = −12→13
15331 measured reflectionsl = −15→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.0339P)2 + 0.943P] where P = (Fo2 + 2Fc2)/3
5170 reflections(Δ/σ)max < 0.001
207 parametersΔρmax = 1.39 e Å3
0 restraintsΔρmin = −1.03 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ir10.183001 (17)0.291467 (16)0.217100 (14)0.03765 (6)
Se10.07448 (5)0.45184 (4)0.31713 (4)0.04549 (12)
Se20.39296 (5)0.45760 (5)0.16421 (5)0.04878 (12)
P10.24433 (11)0.65130 (11)0.37985 (9)0.0347 (2)
P20.35610 (11)0.65739 (11)0.16970 (9)0.0356 (2)
N10.3238 (4)0.7270 (3)0.2873 (3)0.0398 (8)
C10.3029 (7)0.1529 (6)0.1735 (6)0.0703 (16)
H1A0.30890.21060.24190.084*
H1B0.36320.09820.16790.084*
C20.2036 (7)0.1485 (6)0.0795 (5)0.0737 (18)
H2A0.14330.20330.08520.088*
H2B0.19760.09090.01120.088*
C30.0789 (7)0.1508 (6)0.3164 (6)0.0790 (19)
H3A0.17400.21040.32550.095*
H3B0.05170.09530.36940.095*
C4−0.0233 (6)0.1446 (6)0.2229 (6)0.0764 (19)
H4A0.00390.20000.16990.092*
H4B−0.11840.08500.21380.092*
C110.1481 (5)0.7590 (5)0.4494 (4)0.0475 (11)
H11A0.10570.71490.50980.057*
C120.0227 (6)0.7685 (6)0.3672 (5)0.0652 (15)
H12A−0.03310.81610.40790.098*
H12B−0.03930.67780.33190.098*
H12C0.06130.81750.31000.098*
C130.2494 (7)0.9012 (6)0.5043 (6)0.086 (2)
H13A0.31190.93760.45210.129*
H13B0.30800.89590.57170.129*
H13C0.19240.96010.52370.129*
C140.3761 (5)0.6209 (5)0.4850 (4)0.0490 (11)
H14A0.40220.54310.44750.059*
C150.5195 (6)0.7394 (7)0.5211 (6)0.080 (2)
H15A0.50450.81130.57330.121*
H15B0.55130.77390.45540.121*
H15C0.59270.70740.55710.121*
C160.3095 (7)0.5757 (8)0.5874 (5)0.084 (2)
H16A0.37640.54510.63290.126*
H16B0.21940.50200.56190.126*
H16C0.29090.65150.63190.126*
C210.5261 (5)0.7694 (5)0.1388 (4)0.0465 (11)
H21A0.53840.73160.06240.056*
C220.6584 (5)0.7730 (6)0.2205 (5)0.0679 (16)
H22A0.74620.81980.19410.102*
H22B0.65630.68090.22450.102*
H22C0.65600.82040.29460.102*
C230.5204 (7)0.9147 (6)0.1376 (7)0.085 (2)
H23A0.48630.94690.20490.128*
H23B0.45480.91390.07190.128*
H23C0.61640.97460.13540.128*
C240.2058 (5)0.6298 (5)0.0541 (4)0.0510 (12)
H24A0.12740.54960.06410.061*
C250.1402 (7)0.7457 (7)0.0570 (6)0.0793 (18)
H25A0.20840.82380.03750.119*
H25B0.11960.77030.13190.119*
H25C0.05130.71640.00350.119*
C260.2453 (7)0.5916 (9)−0.0620 (5)0.092 (2)
H26A0.15880.5617−0.11820.138*
H26B0.28740.5190−0.06160.138*
H26C0.31480.6702−0.07980.138*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ir10.03986 (10)0.03282 (9)0.03745 (10)0.00918 (7)0.00462 (7)0.00396 (6)
Se10.0369 (2)0.0379 (2)0.0589 (3)0.00759 (18)0.0148 (2)0.0044 (2)
Se20.0454 (2)0.0417 (2)0.0647 (3)0.01693 (19)0.0215 (2)0.0117 (2)
P10.0354 (5)0.0349 (5)0.0337 (6)0.0103 (4)0.0063 (4)0.0076 (4)
P20.0335 (5)0.0390 (6)0.0348 (6)0.0110 (4)0.0058 (4)0.0090 (4)
N10.046 (2)0.0352 (19)0.037 (2)0.0096 (16)0.0086 (16)0.0081 (15)
C10.087 (4)0.050 (3)0.081 (4)0.038 (3)0.023 (4)−0.007 (3)
C20.083 (4)0.057 (3)0.069 (4)0.017 (3)0.021 (3)−0.025 (3)
C30.090 (4)0.057 (3)0.100 (5)0.015 (3)0.043 (4)0.045 (4)
C40.067 (4)0.049 (3)0.091 (5)−0.019 (3)0.030 (3)0.007 (3)
C110.059 (3)0.043 (2)0.046 (3)0.019 (2)0.020 (2)0.010 (2)
C120.071 (3)0.060 (3)0.080 (4)0.039 (3)0.021 (3)0.018 (3)
C130.097 (5)0.054 (3)0.092 (5)0.016 (3)0.021 (4)−0.019 (3)
C140.042 (2)0.064 (3)0.042 (3)0.018 (2)0.002 (2)0.015 (2)
C150.055 (3)0.096 (5)0.066 (4)−0.004 (3)−0.014 (3)0.018 (3)
C160.074 (4)0.129 (6)0.064 (4)0.035 (4)0.015 (3)0.056 (4)
C210.044 (2)0.051 (3)0.047 (3)0.012 (2)0.018 (2)0.015 (2)
C220.041 (3)0.068 (4)0.082 (4)−0.002 (2)0.009 (3)0.015 (3)
C230.074 (4)0.055 (4)0.135 (6)0.013 (3)0.039 (4)0.042 (4)
C240.045 (2)0.067 (3)0.040 (3)0.020 (2)0.000 (2)0.006 (2)
C250.082 (4)0.095 (5)0.072 (4)0.051 (4)−0.006 (3)0.013 (4)
C260.077 (4)0.157 (7)0.042 (3)0.056 (5)−0.006 (3)−0.005 (4)

Geometric parameters (Å, °)

Ir1—C32.119 (5)C13—H13A0.9600
Ir1—C22.125 (5)C13—H13B0.9600
Ir1—C42.141 (5)C13—H13C0.9600
Ir1—C12.145 (5)C14—C161.524 (7)
Ir1—Se22.4590 (5)C14—C151.529 (7)
Ir1—Se12.4611 (5)C14—H14A0.9800
Se1—P12.1975 (11)C15—H15A0.9600
Se2—P22.2026 (12)C15—H15B0.9600
P1—N11.595 (3)C15—H15C0.9600
P1—C111.826 (5)C16—H16A0.9600
P1—C141.832 (5)C16—H16B0.9600
P2—N11.599 (4)C16—H16C0.9600
P2—C211.825 (4)C21—C221.521 (7)
P2—C241.832 (5)C21—C231.530 (7)
C1—C21.394 (9)C21—H21A0.9800
C1—H1A0.9300C22—H22A0.9600
C1—H1B0.9300C22—H22B0.9600
C2—H2A0.9300C22—H22C0.9600
C2—H2B0.9300C23—H23A0.9600
C3—C41.401 (9)C23—H23B0.9600
C3—H3A0.9300C23—H23C0.9600
C3—H3B0.9300C24—C261.518 (7)
C4—H4A0.9300C24—C251.519 (8)
C4—H4B0.9300C24—H24A0.9800
C11—C131.517 (7)C25—H25A0.9600
C11—C121.522 (7)C25—H25B0.9600
C11—H11A0.9800C25—H25C0.9600
C12—H12A0.9600C26—H26A0.9600
C12—H12B0.9600C26—H26B0.9600
C12—H12C0.9600C26—H26C0.9600
C3—Ir1—C298.6 (3)C11—C12—H12C109.5
C3—Ir1—C438.4 (2)H12A—C12—H12C109.5
C2—Ir1—C486.8 (2)H12B—C12—H12C109.5
C3—Ir1—C186.0 (2)C11—C13—H13A109.5
C2—Ir1—C138.1 (2)C11—C13—H13B109.5
C4—Ir1—C198.9 (2)H13A—C13—H13B109.5
C3—Ir1—Se2154.8 (2)C11—C13—H13C109.5
C2—Ir1—Se286.18 (16)H13A—C13—H13C109.5
C4—Ir1—Se2166.4 (2)H13B—C13—H13C109.5
C1—Ir1—Se282.61 (16)C16—C14—C15111.5 (5)
C3—Ir1—Se186.27 (17)C16—C14—P1112.6 (4)
C2—Ir1—Se1156.23 (19)C15—C14—P1114.1 (4)
C4—Ir1—Se182.66 (17)C16—C14—H14A105.9
C1—Ir1—Se1165.18 (18)C15—C14—H14A105.9
Se2—Ir1—Se199.332 (16)P1—C14—H14A105.9
P1—Se1—Ir1109.29 (3)C14—C15—H15A109.5
P2—Se2—Ir1110.38 (3)C14—C15—H15B109.5
N1—P1—C11108.1 (2)H15A—C15—H15B109.5
N1—P1—C14111.3 (2)C14—C15—H15C109.5
C11—P1—C14110.2 (2)H15A—C15—H15C109.5
N1—P1—Se1116.89 (14)H15B—C15—H15C109.5
C11—P1—Se1104.32 (16)C14—C16—H16A109.5
C14—P1—Se1105.85 (17)C14—C16—H16B109.5
N1—P2—C21108.2 (2)H16A—C16—H16B109.5
N1—P2—C24111.2 (2)C14—C16—H16C109.5
C21—P2—C24110.3 (2)H16A—C16—H16C109.5
N1—P2—Se2116.88 (13)H16B—C16—H16C109.5
C21—P2—Se2104.26 (16)C22—C21—C23110.5 (5)
C24—P2—Se2105.67 (17)C22—C21—P2112.0 (3)
P1—N1—P2127.3 (2)C23—C21—P2111.8 (3)
C2—C1—Ir170.2 (3)C22—C21—H21A107.4
C2—C1—H1A120.0C23—C21—H21A107.4
Ir1—C1—H1A49.8P2—C21—H21A107.4
C2—C1—H1B120.0C21—C22—H22A109.5
Ir1—C1—H1B169.8C21—C22—H22B109.5
H1A—C1—H1B120.0H22A—C22—H22B109.5
C1—C2—Ir171.7 (3)C21—C22—H22C109.5
C1—C2—H2A120.0H22A—C22—H22C109.5
Ir1—C2—H2A48.3H22B—C22—H22C109.5
C1—C2—H2B120.0C21—C23—H23A109.5
Ir1—C2—H2B168.3C21—C23—H23B109.5
H2A—C2—H2B120.0H23A—C23—H23B109.5
C4—C3—Ir171.7 (3)C21—C23—H23C109.5
C4—C3—H3A120.0H23A—C23—H23C109.5
Ir1—C3—H3A48.3H23B—C23—H23C109.5
C4—C3—H3B120.0C26—C24—C25111.0 (5)
Ir1—C3—H3B168.3C26—C24—P2112.6 (4)
H3A—C3—H3B120.0C25—C24—P2114.7 (4)
C3—C4—Ir169.9 (3)C26—C24—H24A105.9
C3—C4—H4A120.0C25—C24—H24A105.9
Ir1—C4—H4A50.1P2—C24—H24A105.9
C3—C4—H4B120.0C24—C25—H25A109.5
Ir1—C4—H4B170.1C24—C25—H25B109.5
H4A—C4—H4B120.0H25A—C25—H25B109.5
C13—C11—C12110.4 (5)C24—C25—H25C109.5
C13—C11—P1112.6 (4)H25A—C25—H25C109.5
C12—C11—P1111.3 (3)H25B—C25—H25C109.5
C13—C11—H11A107.5C24—C26—H26A109.5
C12—C11—H11A107.5C24—C26—H26B109.5
P1—C11—H11A107.5H26A—C26—H26B109.5
C11—C12—H12A109.5C24—C26—H26C109.5
C11—C12—H12B109.5H26A—C26—H26C109.5
H12A—C12—H12B109.5H26B—C26—H26C109.5
C3—Ir1—Se1—P1131.1 (2)C1—Ir1—C3—C4−109.8 (4)
C2—Ir1—Se1—P1−126.0 (4)Se2—Ir1—C3—C4−173.1 (3)
C4—Ir1—Se1—P1169.5 (2)Se1—Ir1—C3—C482.9 (4)
C1—Ir1—Se1—P172.3 (6)C2—Ir1—C4—C3108.1 (4)
Se2—Ir1—Se1—P1−24.11 (4)C1—Ir1—C4—C371.8 (4)
C3—Ir1—Se2—P2−121.0 (4)Se2—Ir1—C4—C3167.4 (6)
C2—Ir1—Se2—P2136.9 (2)Se1—Ir1—C4—C3−93.3 (4)
C4—Ir1—Se2—P277.5 (7)N1—P1—C11—C13−57.8 (5)
C1—Ir1—Se2—P2175.02 (19)C14—P1—C11—C1363.9 (5)
Se1—Ir1—Se2—P2−19.84 (4)Se1—P1—C11—C13177.1 (4)
Ir1—Se1—P1—N159.94 (15)N1—P1—C11—C1266.7 (4)
Ir1—Se1—P1—C11179.16 (16)C14—P1—C11—C12−171.6 (3)
Ir1—Se1—P1—C14−64.58 (17)Se1—P1—C11—C12−58.3 (4)
Ir1—Se2—P2—N156.66 (15)N1—P1—C14—C16168.3 (4)
Ir1—Se2—P2—C21175.99 (16)C11—P1—C14—C1648.5 (5)
Ir1—Se2—P2—C24−67.67 (17)Se1—P1—C14—C16−63.7 (5)
C11—P1—N1—P2−148.8 (3)N1—P1—C14—C1539.8 (5)
C14—P1—N1—P290.1 (3)C11—P1—C14—C15−80.0 (5)
Se1—P1—N1—P2−31.6 (3)Se1—P1—C14—C15167.8 (4)
C21—P2—N1—P1−147.9 (3)N1—P2—C21—C2269.1 (4)
C24—P2—N1—P190.8 (3)C24—P2—C21—C22−169.0 (4)
Se2—P2—N1—P1−30.7 (3)Se2—P2—C21—C22−55.9 (4)
C3—Ir1—C1—C2109.3 (4)N1—P2—C21—C23−55.5 (5)
C4—Ir1—C1—C273.1 (4)C24—P2—C21—C2366.4 (5)
Se2—Ir1—C1—C2−93.2 (3)Se2—P2—C21—C23179.4 (4)
Se1—Ir1—C1—C2168.2 (5)N1—P2—C24—C26168.1 (5)
C3—Ir1—C2—C1−72.2 (4)C21—P2—C24—C2648.1 (5)
C4—Ir1—C2—C1−108.8 (4)Se2—P2—C24—C26−64.1 (5)
Se2—Ir1—C2—C182.9 (3)N1—P2—C24—C2539.9 (5)
Se1—Ir1—C2—C1−172.5 (3)C21—P2—C24—C25−80.2 (5)
C2—Ir1—C3—C4−73.7 (4)Se2—P2—C24—C25167.7 (4)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2681).

References

  • Barkaoui, L., Charrouf, M., Rager, M. N., Denise, B., Platzer, N. & Hudler, R. (1997). Bull. Soc. Chim. Fr. 134, 167–172.
  • Bruker (1998). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cheung, W. M., Lai, C. Y., Zhang, Q. F., Wong, W. Y., Williams, I. D. & Leung, W. H. (2006). Inorg. Chim. Acta, 359, 2712–2720.
  • Kirchmann, M., Fleischhauer, S. & Wesemann, L. (2008). Organometallics, 27, 2803–2808.
  • Lundquist, E. G., Folting, K., Streib, W. E., Huffman, J. C., Eisenstein, O. & Caulton, K. G. (1990). J. Am. Chem. Soc. 112, 855–863.
  • Ly, T. Q. & Woollins, J. D. (1998). Coord. Chem. Rev. 176, 451–481.
  • Parr, J., Smith, M. B. & Slawin, A. M. Z. (1999). J. Organomet. Chem. 588, 99–106.
  • Rudler, H., Denise, B., Gregorio, J. R. & Vaissermann, J. (1997). Chem. Commun. 2299–2300.
  • Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stoicheff, B. P. (1962). Tetrahedron, 17, 135–145.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography