PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): o3069.
Published online 2009 November 14. doi:  10.1107/S1600536809046790
PMCID: PMC2971887

A cycloaddition product of a chiral maleimide: 4-{(3aS*,6aS*)-4,6-dioxo-1-phenyl-5-[(1R)-1-phenyl­ethyl]-1,3a,4,5,6,6a-hexa­hydro­pyrrolo[3,4-c]pyrazol-3-yl}phenyl acetate

Abstract

In the title mol­ecule, C27H23N3O4, the two central five-membered rings form a dihedral angle of 63.66 (4)°. The absolute configuration was determined by analysis of Bijvoet pairs based on resonant scattering of light atoms, yielding a Hooft parameter y = −0.10 (7).

Related literature

For cyclo­addition reactions of chiral maleimides with dipolar compounds, see: Bienayme (1997 [triangle]); Blanarikova et al. (2001 [triangle]); Chihab-Eddine et al. (2001 [triangle]); Oishi et al. (1993 [triangle], 1999 [triangle], 2007 [triangle]); Ondrus & Fisera (1997 [triangle]); Tokioka et al. (1997 [triangle]). For the absolute configuration by Bayesian analysis of Bijvoet differences, see: Hooft et al. (2008 [triangle]). For a description of the Cambridge Structural Database, see: Allen (2002 [triangle]). For related structures, see: Hursthouse et al. (2003 [triangle]); Skof et al. (1998 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o3069-scheme1.jpg

Experimental

Crystal data

  • C27H23N3O4
  • M r = 453.48
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o3069-efi1.jpg
  • a = 9.1391 (5) Å
  • b = 8.7465 (5) Å
  • c = 14.442 (1) Å
  • β = 103.786 (5)°
  • V = 1121.17 (12) Å3
  • Z = 2
  • Cu Kα radiation
  • μ = 0.75 mm−1
  • T = 90 K
  • 0.30 × 0.25 × 0.19 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004 [triangle]) T min = 0.806, T max = 0.871
  • 10172 measured reflections
  • 3902 independent reflections
  • 3830 reflections with I > 2σ(I)
  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029
  • wR(F 2) = 0.076
  • S = 1.08
  • 3902 reflections
  • 310 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.21 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1725 Friedel pairs
  • Flack parameter: −0.18 (15)

Data collection: APEX2 (Bruker, 2006 [triangle]); cell refinement: SAINT (Bruker, 2006 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809046790/tk2563sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809046790/tk2563Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are extremely grateful to the Abant Izzet Baysal University, Directorate of Research Projects Commission (BAP grant 2007.03.03.260) and TÜBITAK (The Scientific and Technological Research Council of Turkey, grant 106 T645) for financial support. We also thank Rosalind Segesta for financial assistance with the open-access fee.

supplementary crystallographic information

Comment

There are limited examples of cycloaddition reactions of chiral maleimides with dipolar compounds like nitrones, nitriloxides and anthrones reported in the literature (Bienayme, 1997; Blanarikova et al., 2001; Chihab-Eddine et al., 2001; Oishi et al., 1993; 1999; 2007; Ondrus & Fisera, 1997; Tokioka et al., 1997). To our best knowledge, a literature search revealed that 1,3-dipolar cycloaddition of C,N-substituted nitrilimines to the chiral maleimide, (R)—N-(1-phenylethyl) maleimide, has not been studied. In this work, we report the synthesis, characterization and crystal structure of the diastereomer obtained from the above reaction.

The two five-membered rings at the core of this molecule form a dihedral angle of 63.66 (4)°, and the two rings themselves are essentially planar. The mean deviation of the seven pyrrolidine-2,5-dione atoms from their least-squares plane is 0.008 Å, and the mean deviation for the 4,5-dihydro-1H-pyrazole ring is 0.021 Å. Atom N1 in the pyrrolidine-2,5-dione deviates most from the plane, 0.0172 (11) Å. Atom C4 deviates most from the 4,5-dihydro-1H-pyrazole ring, with deviation 0.0315 (9) Å. Only two structures with similar cores are found in the Cambridge Database (Allen, 2002, version 5.30, Nov. 2008), refcodes CIRFEP (Hursthouse et al., 2003) and WIQBIH (Skof et al., 1998). In CIRFEP, the dihedral angle between the central ring planes is 63.65 (9)°, for one of two independent molecules and 64.23 (9)° for the other. For WIQBIH, the dihedral angle formed by the central ring planes 65.99 (6)°.

In the title compound, the acetate group is nearly orthogonal to the phenyl ring to which it is bonded, as shown by the torsion angle C10—O3—C9—C8, 80.13 (17)°. The phenyl group containing C6 is rotated out of the 4,5-dihydro-1H-pyrazole plane with a torsion angle (C3—C5—C6—C7) of 167.48 (13)°. In addition, the phenyl group containing atom C14 is rotated out of the same plane with a torsion angle (N2—N3—C14—C15) of 159.64 (15)°.

The absolute configuration was determined by refinement of the Flack (1983) parameter, based on resonant scattering of the light atoms. The assignment agrees with that of the starting materials. Analysis of the Bijvoet pairs using the method of Hooft et al. (2008) yielded y = -0.10 (7) for this structure, confirming the absolute configuration.

Experimental

C-(4-Acetoxyphenyl)-N-phenyl hydrazonyl chloride 1 (0,144 g,0.5 mmol) and (R)—N-(1-phenylethyl) maleimide 2 (0,100 g, 0.5 mmol) were dissolved in dry acetonitrile (20 ml). Et3N (0.404 g, 4 mmol) was added dropwise into the mixture with stirring and after the addition was completed, the reaction mixture was stirred at room temperature for 2 h; the progress of the reaction was monitored by TLC. The acetonitrile was evaporated under reduced pressure and the reaction mixture was taken into water (50 ml) to remove Et3N.HCl. The crude brown cycloadduct that precipitated was filtered and washed thoroughly with water and then hexanes, and dried under vacuum. After purification on Chromatotron (Centrifugal Thin-Layer Chromatograph) using n-hexane-ethyl acetate (2:1) as eluant and recrystallization from a mixture of dichloromethane-n-hexane-acetone, the cycloadduct 3 was isolated as yellow needles (160 mg, 71%). [α]21°C589 = +79.0° (c = 0.01 g/ml, l=10 cm, acetone). M. pt. 359–361 K. Rf: 0.60 (ethyl acetate-n-hexane; 1:2).

IR (KBr): ν = 1757 (CH3CO), 1710 (CO), 1599 (CN), 1498, 1452, 1357, 1197, 750 cm-1.

1H NMR (400 MHz, CDCl3): δ = 8.10 (q, J=3.8 Hz, 2H), 7.58 (t, J=7.6 Hz, 2H), 7.47 (t, J=7.2 Hz, 2H), 7.24–7.36 (m, 5H), 7.18 (q, J=4.6 Hz, 2H), 7.01 (t, J=7.3 Hz, 1H), 5.44 (quintet, 1H, CH3CH), 5.08–4.95 (dd, J=51.1 10.9 Hz, 1H,), 4.76 (dd, J=21.5 11.0 Hz, 1H), 2.35 (s, 3H) 1.76–1.86 (m, 3H).

13C NMR (100 MHz,CDCl3): δ =172.5 (CO), 171.5 (CO), 169.4 (CH3CO), 151.5 (CN), 144.5, 142.0, 138.7, 129.2, 128.9, 128.6, 128.3, 128.2, 127.6, 121.8, 121.5, 114.4, 65.4 (–CH), 53.3 (–CH), 51.4 (–CH), 21.1(CH3CO), 16.4 (CH3).

GC—MS (70 eV): (m/z, %)= 453 (100) [M]+, 411 (65), 307 (100), 236 (50), 207 (10), 105 (33), 70 (10).

Anal Calcd for C27H23N3O4. C, 71.51; H, 5.11; N, 9.27%; found C, 71.63; H, 5.11; N, 9.25%.

Refinement

H atoms on C were placed in idealized positions with C—H distances 0.95 - 1.00 Å and thereafter treated as riding. A torsional parameter was refined for each methyl group. Uiso for H were assigned as 1.2 times Ueq of the attached atoms (1.5 for methyl).

Figures

Fig. 1.
Molecular structure showing atom labelling and displacement ellipsoids at the 50% level, with H atoms having arbitrary radius.
Fig. 2.
The formation of the title compound.

Crystal data

C27H23N3O4F(000) = 476
Mr = 453.48Dx = 1.343 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ybCell parameters from 7860 reflections
a = 9.1391 (5) Åθ = 3.2–68.3°
b = 8.7465 (5) ŵ = 0.75 mm1
c = 14.442 (1) ÅT = 90 K
β = 103.786 (5)°Fragment, yellow
V = 1121.17 (12) Å30.30 × 0.25 × 0.19 mm
Z = 2

Data collection

Bruker APEXII CCD diffractometer3902 independent reflections
Radiation source: fine-focus sealed tube3830 reflections with I > 2σ(I)
graphiteRint = 0.029
[var phi] and ω scansθmax = 68.8°, θmin = 3.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004)h = −10→11
Tmin = 0.806, Tmax = 0.871k = −9→10
10172 measured reflectionsl = −17→17

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.029w = 1/[σ2(Fo2) + (0.0355P)2 + 0.2144P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.076(Δ/σ)max = 0.001
S = 1.08Δρmax = 0.23 e Å3
3902 reflectionsΔρmin = −0.21 e Å3
310 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0021 (4)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1725 Friedel pairs
Secondary atom site location: difference Fourier mapFlack parameter: −0.18 (15)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, anglesand torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.31157 (12)0.46611 (15)0.83990 (8)0.0332 (3)
O20.25737 (11)0.33703 (12)0.52738 (7)0.0246 (2)
O3−0.37802 (12)0.37334 (12)0.19079 (8)0.0270 (2)
O4−0.29475 (18)0.60155 (17)0.15371 (9)0.0512 (4)
N10.31609 (13)0.41517 (15)0.68415 (9)0.0217 (3)
N2−0.10053 (12)0.50276 (15)0.63294 (8)0.0202 (3)
N3−0.01685 (13)0.48013 (15)0.72440 (9)0.0223 (3)
C10.25163 (16)0.41734 (19)0.76244 (11)0.0243 (3)
C20.22410 (15)0.35331 (16)0.60278 (11)0.0214 (3)
C30.07344 (15)0.31006 (17)0.62509 (10)0.0212 (3)
H30.04970.19900.61380.025*
C40.09114 (16)0.35455 (18)0.72977 (11)0.0238 (3)
H40.07120.26750.76990.029*
C5−0.05658 (15)0.41174 (17)0.57491 (10)0.0200 (3)
C6−0.13497 (15)0.40425 (17)0.47391 (10)0.0202 (3)
C7−0.27083 (15)0.48411 (17)0.44207 (10)0.0201 (3)
H7−0.30910.54400.48590.024*
C8−0.34965 (16)0.47673 (18)0.34774 (10)0.0220 (3)
H8−0.44170.53090.32650.026*
C9−0.29238 (16)0.38923 (18)0.28474 (10)0.0229 (3)
C10−0.37251 (19)0.4912 (2)0.13033 (11)0.0306 (4)
C11−0.4770 (2)0.4640 (2)0.03545 (12)0.0389 (4)
H11A−0.58010.48950.03860.058*
H11B−0.47220.35620.01780.058*
H11C−0.44730.5285−0.01250.058*
C12−0.15893 (16)0.31088 (18)0.31350 (11)0.0256 (3)
H12−0.12110.25230.26890.031*
C13−0.07975 (16)0.31808 (17)0.40842 (11)0.0235 (3)
H130.01250.26400.42880.028*
C14−0.06694 (16)0.54178 (18)0.80081 (10)0.0227 (3)
C15−0.01474 (17)0.4835 (2)0.89311 (11)0.0295 (3)
H150.05880.40460.90530.035*
C16−0.07195 (18)0.5425 (2)0.96665 (11)0.0336 (4)
H16−0.03870.50131.02900.040*
C17−0.17628 (19)0.6599 (2)0.95098 (12)0.0337 (4)
H17−0.21480.69871.00190.040*
C18−0.22385 (19)0.7203 (2)0.85994 (12)0.0309 (4)
H18−0.29470.80170.84860.037*
C19−0.16884 (16)0.66269 (18)0.78508 (11)0.0241 (3)
H19−0.20080.70590.72320.029*
C200.47221 (15)0.47134 (18)0.69157 (10)0.0224 (3)
H200.50050.53310.75150.027*
C210.58097 (15)0.33623 (17)0.70440 (10)0.0216 (3)
C220.64427 (16)0.2851 (2)0.79644 (11)0.0280 (3)
H220.61830.33380.84910.034*
C230.74501 (18)0.1637 (2)0.81217 (12)0.0336 (4)
H230.78730.12970.87530.040*
C240.78404 (17)0.09222 (19)0.73593 (13)0.0306 (4)
H240.85370.00980.74670.037*
C250.72090 (17)0.14149 (18)0.64378 (12)0.0262 (3)
H250.74670.09230.59120.031*
C260.61966 (15)0.26322 (18)0.62843 (10)0.0231 (3)
H260.57670.29660.56520.028*
C270.47789 (16)0.57928 (18)0.60983 (11)0.0248 (3)
H27A0.45750.52190.54980.037*
H27B0.57800.62600.62110.037*
H27C0.40170.65950.60590.037*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0219 (5)0.0485 (8)0.0267 (6)−0.0021 (5)0.0010 (4)0.0012 (5)
O20.0188 (5)0.0242 (6)0.0303 (6)−0.0012 (4)0.0046 (4)−0.0025 (4)
O30.0277 (5)0.0241 (6)0.0265 (5)−0.0044 (4)0.0012 (4)−0.0038 (4)
O40.0695 (10)0.0493 (9)0.0298 (6)−0.0348 (8)0.0020 (6)0.0011 (6)
N10.0143 (5)0.0213 (6)0.0282 (6)0.0002 (5)0.0022 (5)0.0005 (5)
N20.0155 (5)0.0196 (6)0.0237 (6)−0.0022 (5)0.0013 (5)0.0033 (5)
N30.0171 (6)0.0252 (6)0.0227 (6)0.0016 (5)0.0007 (4)0.0034 (5)
C10.0183 (7)0.0242 (8)0.0282 (8)0.0028 (6)0.0015 (6)0.0066 (6)
C20.0161 (6)0.0147 (7)0.0311 (8)0.0021 (6)0.0011 (6)0.0024 (6)
C30.0156 (7)0.0165 (7)0.0298 (7)−0.0005 (5)0.0020 (5)0.0027 (6)
C40.0170 (7)0.0233 (8)0.0295 (7)0.0021 (6)0.0025 (6)0.0057 (6)
C50.0134 (6)0.0155 (7)0.0308 (8)−0.0005 (5)0.0046 (5)0.0022 (6)
C60.0159 (6)0.0147 (7)0.0288 (7)−0.0021 (5)0.0028 (5)0.0017 (6)
C70.0181 (6)0.0164 (7)0.0265 (7)−0.0001 (6)0.0063 (5)−0.0004 (6)
C80.0189 (7)0.0180 (7)0.0274 (7)0.0024 (6)0.0024 (6)0.0015 (6)
C90.0221 (7)0.0197 (8)0.0249 (7)−0.0031 (6)0.0013 (6)−0.0013 (6)
C100.0314 (8)0.0342 (10)0.0267 (8)−0.0062 (7)0.0079 (6)−0.0026 (7)
C110.0424 (10)0.0454 (11)0.0263 (8)−0.0104 (9)0.0031 (7)−0.0024 (8)
C120.0226 (7)0.0221 (8)0.0325 (8)0.0001 (6)0.0073 (6)−0.0063 (6)
C130.0165 (7)0.0185 (7)0.0341 (8)0.0016 (5)0.0035 (6)−0.0011 (6)
C140.0167 (7)0.0264 (8)0.0239 (7)−0.0085 (6)0.0029 (6)−0.0010 (6)
C150.0219 (7)0.0358 (9)0.0285 (8)−0.0018 (7)0.0015 (6)0.0056 (7)
C160.0289 (8)0.0481 (11)0.0222 (7)−0.0142 (8)0.0027 (6)0.0000 (7)
C170.0307 (8)0.0419 (10)0.0304 (8)−0.0143 (8)0.0113 (7)−0.0105 (7)
C180.0287 (8)0.0302 (9)0.0350 (9)−0.0049 (7)0.0098 (7)−0.0072 (7)
C190.0194 (7)0.0246 (8)0.0274 (8)−0.0051 (6)0.0034 (6)−0.0025 (6)
C200.0137 (6)0.0224 (7)0.0289 (7)−0.0026 (6)0.0010 (5)−0.0025 (6)
C210.0120 (6)0.0211 (8)0.0298 (7)−0.0046 (5)0.0010 (5)0.0008 (6)
C220.0207 (7)0.0316 (9)0.0292 (8)−0.0005 (7)0.0010 (6)−0.0008 (7)
C230.0256 (8)0.0361 (10)0.0342 (9)0.0025 (7)−0.0026 (7)0.0074 (7)
C240.0179 (7)0.0210 (8)0.0495 (10)0.0000 (6)0.0011 (7)0.0053 (7)
C250.0187 (7)0.0220 (8)0.0382 (9)−0.0049 (6)0.0073 (6)−0.0028 (6)
C260.0160 (7)0.0213 (8)0.0302 (7)−0.0049 (6)0.0022 (5)0.0031 (6)
C270.0176 (7)0.0203 (7)0.0354 (8)−0.0002 (6)0.0043 (6)0.0019 (6)

Geometric parameters (Å, °)

O1—C11.201 (2)C12—H120.9500
O2—C21.2068 (18)C13—H130.9500
O3—C101.359 (2)C14—C191.392 (2)
O3—C91.4024 (17)C14—C151.401 (2)
O4—C101.199 (2)C15—C161.390 (2)
N1—C21.3818 (19)C15—H150.9500
N1—C11.3940 (19)C16—C171.383 (3)
N1—C201.4886 (17)C16—H160.9500
N2—C51.288 (2)C17—C181.387 (3)
N2—N31.3739 (16)C17—H170.9500
N3—C141.3995 (19)C18—C191.391 (2)
N3—C41.4663 (19)C18—H180.9500
C1—C41.532 (2)C19—H190.9500
C2—C31.5343 (19)C20—C271.522 (2)
C3—C51.5224 (19)C20—C211.527 (2)
C3—C41.532 (2)C20—H201.0000
C3—H31.0000C21—C261.386 (2)
C4—H41.0000C21—C221.391 (2)
C5—C61.465 (2)C22—C231.388 (2)
C6—C131.395 (2)C22—H220.9500
C6—C71.403 (2)C23—C241.385 (3)
C7—C81.382 (2)C23—H230.9500
C7—H70.9500C24—C251.387 (2)
C8—C91.384 (2)C24—H240.9500
C8—H80.9500C25—C261.393 (2)
C9—C121.374 (2)C25—H250.9500
C10—C111.491 (2)C26—H260.9500
C11—H11A0.9800C27—H27A0.9800
C11—H11B0.9800C27—H27B0.9800
C11—H11C0.9800C27—H27C0.9800
C12—C131.391 (2)
C10—O3—C9116.66 (12)C13—C12—H12120.3
C2—N1—C1113.95 (12)C12—C13—C6120.38 (13)
C2—N1—C20124.68 (12)C12—C13—H13119.8
C1—N1—C20121.34 (12)C6—C13—H13119.8
C5—N2—N3110.38 (12)C19—C14—N3119.74 (13)
N2—N3—C14119.40 (12)C19—C14—C15119.67 (14)
N2—N3—C4111.85 (12)N3—C14—C15120.60 (14)
C14—N3—C4126.12 (12)C16—C15—C14119.16 (15)
O1—C1—N1124.99 (14)C16—C15—H15120.4
O1—C1—C4127.24 (14)C14—C15—H15120.4
N1—C1—C4107.70 (12)C17—C16—C15121.39 (16)
O2—C2—N1125.48 (12)C17—C16—H16119.3
O2—C2—C3126.31 (13)C15—C16—H16119.3
N1—C2—C3108.21 (12)C16—C17—C18119.08 (16)
C5—C3—C4102.02 (12)C16—C17—H17120.5
C5—C3—C2113.18 (12)C18—C17—H17120.5
C4—C3—C2104.81 (11)C17—C18—C19120.61 (17)
C5—C3—H3112.1C17—C18—H18119.7
C4—C3—H3112.1C19—C18—H18119.7
C2—C3—H3112.1C18—C19—C14120.01 (15)
N3—C4—C1109.32 (13)C18—C19—H19120.0
N3—C4—C3103.10 (11)C14—C19—H19120.0
C1—C4—C3105.26 (11)N1—C20—C27110.98 (12)
N3—C4—H4112.8N1—C20—C21109.78 (12)
C1—C4—H4112.8C27—C20—C21115.64 (12)
C3—C4—H4112.8N1—C20—H20106.6
N2—C5—C6121.41 (13)C27—C20—H20106.6
N2—C5—C3112.37 (12)C21—C20—H20106.6
C6—C5—C3126.07 (13)C26—C21—C22118.81 (14)
C13—C6—C7118.79 (13)C26—C21—C20122.82 (13)
C13—C6—C5121.95 (13)C22—C21—C20118.37 (13)
C7—C6—C5119.25 (13)C23—C22—C21120.72 (15)
C8—C7—C6120.82 (14)C23—C22—H22119.6
C8—C7—H7119.6C21—C22—H22119.6
C6—C7—H7119.6C24—C23—C22120.12 (15)
C7—C8—C9118.94 (13)C24—C23—H23119.9
C7—C8—H8120.5C22—C23—H23119.9
C9—C8—H8120.5C23—C24—C25119.70 (15)
C12—C9—C8121.64 (14)C23—C24—H24120.2
C12—C9—O3119.57 (13)C25—C24—H24120.2
C8—C9—O3118.67 (13)C24—C25—C26119.92 (15)
O4—C10—O3122.68 (15)C24—C25—H25120.0
O4—C10—C11126.45 (17)C26—C25—H25120.0
O3—C10—C11110.86 (15)C21—C26—C25120.73 (14)
C10—C11—H11A109.5C21—C26—H26119.6
C10—C11—H11B109.5C25—C26—H26119.6
H11A—C11—H11B109.5C20—C27—H27A109.5
C10—C11—H11C109.5C20—C27—H27B109.5
H11A—C11—H11C109.5H27A—C27—H27B109.5
H11B—C11—H11C109.5C20—C27—H27C109.5
C9—C12—C13119.42 (14)H27A—C27—H27C109.5
C9—C12—H12120.3H27B—C27—H27C109.5
C5—N2—N3—C14−165.83 (13)C7—C8—C9—C12−0.5 (2)
C5—N2—N3—C4−3.11 (16)C7—C8—C9—O3175.50 (13)
C2—N1—C1—O1−179.89 (16)C10—O3—C9—C12−103.74 (17)
C20—N1—C1—O11.9 (2)C10—O3—C9—C880.13 (17)
C2—N1—C1—C4−2.61 (17)C9—O3—C10—O42.7 (2)
C20—N1—C1—C4179.13 (13)C9—O3—C10—C11−175.85 (14)
C1—N1—C2—O2−178.43 (14)C8—C9—C12—C130.7 (2)
C20—N1—C2—O2−0.2 (2)O3—C9—C12—C13−175.35 (13)
C1—N1—C2—C31.78 (16)C9—C12—C13—C6−0.1 (2)
C20—N1—C2—C3179.98 (13)C7—C6—C13—C12−0.5 (2)
O2—C2—C3—C5−69.64 (19)C5—C6—C13—C12178.55 (14)
N1—C2—C3—C5110.15 (14)N2—N3—C14—C19−20.74 (19)
O2—C2—C3—C4−179.98 (14)C4—N3—C14—C19179.21 (13)
N1—C2—C3—C4−0.19 (15)N2—N3—C14—C15159.64 (14)
N2—N3—C4—C1116.74 (13)C4—N3—C14—C15−0.4 (2)
C14—N3—C4—C1−81.94 (17)C19—C14—C15—C163.3 (2)
N2—N3—C4—C35.15 (15)N3—C14—C15—C16−177.05 (14)
C14—N3—C4—C3166.47 (13)C14—C15—C16—C17−1.6 (2)
O1—C1—C4—N369.3 (2)C15—C16—C17—C18−0.4 (2)
N1—C1—C4—N3−107.87 (14)C16—C17—C18—C190.7 (2)
O1—C1—C4—C3179.49 (16)C17—C18—C19—C141.0 (2)
N1—C1—C4—C32.28 (16)N3—C14—C19—C18177.33 (14)
C5—C3—C4—N3−4.89 (14)C15—C14—C19—C18−3.1 (2)
C2—C3—C4—N3113.31 (12)C2—N1—C20—C2749.95 (19)
C5—C3—C4—C1−119.45 (12)C1—N1—C20—C27−131.99 (14)
C2—C3—C4—C1−1.24 (15)C2—N1—C20—C21−79.14 (17)
N3—N2—C5—C6175.25 (12)C1—N1—C20—C2198.93 (15)
N3—N2—C5—C3−0.51 (16)N1—C20—C21—C2692.06 (16)
C4—C3—C5—N23.60 (15)C27—C20—C21—C26−34.43 (19)
C2—C3—C5—N2−108.46 (14)N1—C20—C21—C22−88.28 (16)
C4—C3—C5—C6−171.92 (13)C27—C20—C21—C22145.23 (14)
C2—C3—C5—C676.02 (18)C26—C21—C22—C230.3 (2)
N2—C5—C6—C13173.31 (14)C20—C21—C22—C23−179.33 (14)
C3—C5—C6—C13−11.5 (2)C21—C22—C23—C240.2 (2)
N2—C5—C6—C7−7.7 (2)C22—C23—C24—C25−0.6 (2)
C3—C5—C6—C7167.48 (13)C23—C24—C25—C260.5 (2)
C13—C6—C7—C80.6 (2)C22—C21—C26—C25−0.4 (2)
C5—C6—C7—C8−178.46 (13)C20—C21—C26—C25179.21 (13)
C6—C7—C8—C9−0.1 (2)C24—C25—C26—C210.0 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2563).

References

  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Bienayme, H. (1997). Angew. Chem. Int. Ed. 36, 2670–2673.
  • Blanarikova, I., Dugovic, B., Fisera, L., Hametner, C. & Pronayova, N. (2001). Arkivoc, 2, 1091–1103.
  • Bruker (2006). APEX2 andSAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chihab-Eddine, A., Daich, A., Jilale, A. & Decroix, B. (2001). Tetrahedron Lett. 42, 573–576.
  • Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103. [PMC free article] [PubMed]
  • Hursthouse, M. B., Light, M. E. & Jones, R. C. F. (2003). Private communication to the Cambridge Structural Database (refcode WIQBIH). CCDC, Cambridge, England.
  • Oishi, T., Gao, H. J., Nakamura, T., Isobe, Y. & Onimura, K. (2007). Polym. J. 39, 1047–1059.
  • Oishi, T., Kagawa, K. & Fujimoto, M. (1993). Polymer, 34, 2644–2649.
  • Oishi, T., Onimura, K., Tanaka, K., Horimoto, W. & Tsutsumi, H. (1999). J. Polym. Sci Part A Polym. Chem. 37, 473–482.
  • Ondrus, V. & Fisera, L. (1997). Molecules, 2, 49–56.
  • Sheldrick, G. (2004). SADABS. University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Skof, M., Svete, J., Stanovnik, B., Golic, L., Golic-Grdadolnik, S. & Selic, L. (1998). Helv. Chim. Acta, 81, 2332–2340.
  • Tokioka, K., Masuda, S., Fujii, T., Hata, Y. & Yamamoto, Y. (1997). Tetrahedron Asymmetry, 8, 101–107.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography