PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): m1657.
Published online 2009 November 21. doi:  10.1107/S1600536809049083
PMCID: PMC2971884

Poly[[tetraaqua­bis(μ3-1H-benzimidazole-5,6-dicarboxyl­ato)dicobalt(II)] trihydrate]

Abstract

The title complex, {[Co2(C9H4N2O4)2(H2O)4]·3H2O}n, was synthesized hydro­thermally. The unique CoII ion is coordin­ated in a distorted octa­hedral coordination environment by two water mol­ecules and three symmetry-related 1H-benzimid­azole-5,6-dicarboxyl­ate (Hbidc) ligands. The Hbidc ligands coordinate via a bis-chelating and mono-chelating carboxyl­ate group and by an imidazole group N atom, bridging the CoII ions and forming an extended two-dimensional structure in the ab plane. In the crystal structure, inter­molecular N—H(...)O and O—H(...)O hydrogen bonds connect complex and solvent water mol­ecules, forming a three-dimensional supermolecular network. One of the solvent water mol­ecules lies on a twofold rotation axis.

Related literature

For background information on carboxyl­ate ligands in coordination chemistry, see: Laduca (2009 [triangle]); Grodzicki et al. (2005 [triangle]). For the isostructural Ni(II) complex, see: Yao et al. (2008 [triangle]). For related structures, see: Wei et al. (2008 [triangle]); Xu & Yu (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1657-scheme1.jpg

Experimental

Crystal data

  • [Co2(C9H4N2O4)2(H2O)4]·3H2O
  • M r = 652.26
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1657-efi5.jpg
  • a = 22.4085 (18) Å
  • b = 9.1564 (7) Å
  • c = 13.0907 (10) Å
  • β = 121.006 (4)°
  • V = 2302.2 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.53 mm−1
  • T = 296 K
  • 0.43 × 0.25 × 0.07 mm

Data collection

  • Bruker APEXII diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.63, T max = 0.90
  • 9315 measured reflections
  • 2656 independent reflections
  • 2402 reflections with I > 2σ(I)
  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029
  • wR(F 2) = 0.087
  • S = 1.03
  • 2656 reflections
  • 174 parameters
  • 6 restraints
  • H-atom parameters constrained
  • Δρmax = 0.81 e Å−3
  • Δρmin = −0.63 e Å−3

Data collection: APEX2 (Bruker, 2006 [triangle]); cell refinement: SAINT (Bruker, 2006 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809049083/lh2948sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809049083/lh2948Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

It is well known that carboxylate ligands play an important role in coordination chemistry (Grodzicki et al. , 2005; Laduca, 2009). In recent years, the interaction of Hbidc with several metal ions has been studied, due to its unique ability to form stable chelates in diverse coordination modes such as bidentate, meridian and bridging (Wei et al., 2008; Yao et al., 2008). Herein we report the synthesis and crystal structure of the title two-dimensional complex of Hbidc (I).

Part of the 2-D structure of (I) is shown in Fig.1. The unique CoII ion is six-coordinated by one N atom and three O atoms from from three symmetry related Hbidc ligands and two oxygen atoms from two water molecules. Each Hbidc ligand coordinates via a chelating carboxylate group and a single oxygen atom of another carboxylate group bridging two CoII ions to form a one-dimensional chain along the b-axis with a Co···Co separation of 5.4374 (5) Å. In addition, Hbidc ligands coordinate through a N atom to connect the adjacent chains forming a two-dimensional network with chains separated by ca. 7.06 Å (see Fig. 2a). In the crystal structure, intermolecular N-H···O and O-H···O hydrogen bonds connect complex and solvent water molecules to form a three-dimensional supermolecular network (see Table 1 and Fig. 2b).

Experimental

A mixture of CoSO4.7H2O(0.141 g, 0.5 mmol), benzimidazole-5,6-dicarboxylic acid(0.103 g, 0.5 mmol), H2O(16 ml)and 4-sulfophthalic(1 ml)(solution pH = 5) was sealed in a 25 ml Teflon-lined stainless steel reactor and heated at 393 k for 3 d. On completion of the reaction, the reactor was cooled slowly to room temperature and the mixture was filtered, giving red single crystals suitable for X-ray analysis in 30% yield.

Refinement

H-atoms were positioned geometrically and included in the refinement using a riding-model approximation [C–H = 0.93, O–H = 0.84 and N-H = 0.86Å] with Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(O).

Figures

Fig. 1.
Part of the 2-D structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (A)-x, -y, -z; (B)x + 1/2, -y + 1/2, z + 1/2; (c)x - 1/2,-y + 1/2, z - 1/2.
Fig. 2.
(a) Part of the 2-D structure of (I) viewed along the crystallographic c-axis. (b) Part of the crystal structure showing the donor···acceptor atom distances of hydrogen bonds as dashed lines.

Crystal data

[Co2(C9H4N2O4)2(H2O)4]·3H2OF(000) = 1328
Mr = 652.26Dx = 1.882 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5695 reflections
a = 22.4085 (18) Åθ = 2.1–27.6°
b = 9.1564 (7) ŵ = 1.53 mm1
c = 13.0907 (10) ÅT = 296 K
β = 121.006 (4)°Block, red
V = 2302.2 (3) Å30.43 × 0.25 × 0.07 mm
Z = 4

Data collection

Bruker APEXII diffractometer2656 independent reflections
Radiation source: fine-focus sealed tube2402 reflections with I > 2σ(I)
graphiteRint = 0.018
ω scansθmax = 27.6°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −29→27
Tmin = 0.63, Tmax = 0.90k = −11→11
9315 measured reflectionsl = −16→17

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.0533P)2 + 3.4124P] where P = (Fo2 + 2Fc2)/3
2656 reflections(Δ/σ)max = 0.001
174 parametersΔρmax = 0.81 e Å3
6 restraintsΔρmin = −0.63 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Co10.199951 (12)0.14498 (3)0.12124 (2)0.01825 (10)
O1−0.19686 (7)0.44398 (15)−0.25564 (13)0.0239 (3)
O2−0.20916 (7)0.22564 (15)−0.33254 (12)0.0216 (3)
O3−0.10064 (8)−0.07292 (17)−0.23544 (16)0.0335 (4)
O3W0.20211 (8)0.25089 (16)0.26967 (13)0.0277 (3)
H3WA0.19740.34190.26900.042*
H3WB0.17060.20710.27420.042*
O4−0.14121 (7)0.02445 (15)−0.12688 (12)0.0224 (3)
O4W0.20838 (8)0.03724 (17)−0.01154 (13)0.0302 (3)
H4WA0.20190.0885−0.06960.045*
H4WB0.1863−0.0415−0.03650.045*
N10.07455 (8)0.50513 (18)−0.06630 (15)0.0222 (3)
H1A0.07160.5976−0.07940.027*
N20.12237 (8)0.28672 (18)0.00087 (15)0.0225 (3)
C1−0.09320 (9)0.3057 (2)−0.19386 (16)0.0181 (4)
C2−0.06298 (9)0.1649 (2)−0.15733 (16)0.0175 (4)
C30.00868 (10)0.1468 (2)−0.09321 (18)0.0207 (4)
H3A0.02850.0544−0.07000.025*
C40.05016 (9)0.2710 (2)−0.06466 (17)0.0195 (4)
C50.01982 (10)0.4091 (2)−0.10514 (17)0.0189 (4)
C6−0.05185 (9)0.4293 (2)−0.16866 (17)0.0195 (4)
H6A−0.07140.5216−0.19330.023*
C7−0.17032 (9)0.3262 (2)−0.26428 (16)0.0177 (3)
C8−0.10569 (9)0.0287 (2)−0.17727 (16)0.0194 (4)
C90.13324 (10)0.4278 (2)−0.00439 (18)0.0240 (4)
H9A0.17740.46910.03150.029*
O1W0.00000.24202 (17)0.25000.1066 (18)
H1W−0.03000.19170.25430.160*
O2W0.16430.75912 (17)0.00160.0530 (5)
H2WA0.14920.80720.03820.080*
H2WB0.20530.74030.05580.080*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Co10.01193 (15)0.01637 (16)0.02247 (16)−0.00183 (8)0.00601 (11)0.00077 (9)
O10.0152 (6)0.0189 (7)0.0326 (7)0.0021 (5)0.0086 (6)−0.0031 (6)
O20.0145 (6)0.0201 (7)0.0250 (7)−0.0001 (5)0.0064 (5)−0.0035 (5)
O30.0321 (8)0.0251 (8)0.0530 (10)−0.0099 (6)0.0289 (8)−0.0140 (7)
O3W0.0269 (8)0.0208 (7)0.0381 (8)−0.0053 (6)0.0186 (7)−0.0047 (6)
O40.0197 (6)0.0207 (7)0.0290 (7)−0.0043 (5)0.0139 (6)−0.0005 (5)
O4W0.0398 (9)0.0241 (7)0.0287 (7)−0.0068 (6)0.0191 (7)−0.0012 (6)
N10.0166 (8)0.0159 (8)0.0313 (9)−0.0036 (6)0.0104 (7)−0.0003 (6)
N20.0118 (7)0.0221 (8)0.0271 (8)−0.0023 (6)0.0054 (6)0.0023 (7)
C10.0134 (8)0.0187 (9)0.0201 (8)0.0002 (7)0.0072 (7)0.0008 (7)
C20.0138 (8)0.0164 (9)0.0202 (8)−0.0008 (6)0.0072 (7)0.0011 (7)
C30.0148 (9)0.0162 (9)0.0263 (9)0.0010 (6)0.0072 (7)0.0029 (7)
C40.0123 (8)0.0212 (9)0.0219 (9)−0.0009 (7)0.0067 (7)0.0021 (7)
C50.0171 (9)0.0161 (9)0.0225 (9)−0.0024 (7)0.0095 (7)0.0000 (7)
C60.0163 (8)0.0159 (9)0.0244 (9)0.0015 (7)0.0091 (7)0.0023 (7)
C70.0135 (8)0.0176 (8)0.0208 (9)0.0006 (7)0.0079 (7)0.0026 (7)
C80.0119 (8)0.0173 (9)0.0237 (9)−0.0013 (7)0.0054 (7)0.0017 (7)
C90.0150 (9)0.0241 (10)0.0289 (10)−0.0037 (7)0.0084 (8)−0.0001 (8)
O1W0.103 (3)0.0399 (18)0.247 (6)0.0000.140 (4)0.000
O2W0.0709 (14)0.0310 (10)0.0514 (11)−0.0099 (9)0.0275 (10)−0.0037 (8)

Geometric parameters (Å, °)

Co1—O4i2.0603 (14)N1—C51.376 (2)
Co1—N22.0898 (16)N1—H1A0.8598
Co1—O4W2.0901 (15)N2—C91.322 (3)
Co1—O3W2.1497 (15)N2—C41.395 (2)
Co1—O2ii2.1560 (13)C1—C61.390 (3)
Co1—O1ii2.1837 (14)C1—C21.420 (3)
Co1—C7ii2.5057 (18)C1—C71.493 (2)
O1—C71.265 (2)C2—C31.386 (3)
O1—Co1iii2.1837 (14)C2—C81.511 (2)
O2—C71.266 (2)C3—C41.393 (3)
O2—Co1iii2.1560 (13)C3—H3A0.9300
O3—C81.244 (2)C4—C51.404 (3)
O3W—H3WA0.8399C5—C61.389 (3)
O3W—H3WB0.8399C6—H6A0.9300
O4—C81.269 (2)C7—Co1iii2.5057 (18)
O4—Co1i2.0603 (14)C9—H9A0.9300
O4W—H4WA0.8401O1W—H1W0.8401
O4W—H4WB0.8393O2W—H2WA0.8400
N1—C91.338 (3)O2W—H2WB0.8401
O4i—Co1—N2101.30 (6)C9—N2—Co1122.80 (13)
O4i—Co1—O4W90.43 (6)C4—N2—Co1130.58 (13)
N2—Co1—O4W93.58 (7)C6—C1—C2121.02 (16)
O4i—Co1—O3W91.41 (6)C6—C1—C7117.55 (16)
N2—Co1—O3W91.38 (6)C2—C1—C7121.40 (16)
O4W—Co1—O3W174.27 (6)C3—C2—C1121.02 (16)
O4i—Co1—O2ii158.80 (5)C3—C2—C8116.03 (16)
N2—Co1—O2ii99.73 (6)C1—C2—C8122.80 (16)
O4W—Co1—O2ii90.90 (6)C2—C3—C4118.00 (17)
O3W—Co1—O2ii85.43 (5)C2—C3—H3A121.0
O4i—Co1—O1ii98.39 (5)C4—C3—H3A121.0
N2—Co1—O1ii160.30 (6)C3—C4—N2130.70 (18)
O4W—Co1—O1ii85.57 (6)C3—C4—C5120.52 (17)
O3W—Co1—O1ii88.79 (6)N2—C4—C5108.77 (16)
O2ii—Co1—O1ii60.64 (5)N1—C5—C6132.21 (18)
O4i—Co1—C7ii128.59 (6)N1—C5—C4105.67 (16)
N2—Co1—C7ii130.06 (6)C6—C5—C4122.11 (17)
O4W—Co1—C7ii88.46 (6)C5—C6—C1117.23 (17)
O3W—Co1—C7ii86.15 (6)C5—C6—H6A121.4
O2ii—Co1—C7ii30.33 (6)C1—C6—H6A121.4
O1ii—Co1—C7ii30.31 (6)O1—C7—O2119.96 (16)
C7—O1—Co1iii89.07 (11)O1—C7—C1119.97 (16)
C7—O2—Co1iii90.30 (11)O2—C7—C1120.07 (16)
Co1—O3W—H3WA119.7O1—C7—Co1iii60.62 (9)
Co1—O3W—H3WB102.7O2—C7—Co1iii59.36 (9)
H3WA—O3W—H3WB111.6C1—C7—Co1iii178.35 (14)
C8—O4—Co1i128.68 (13)O3—C8—O4125.06 (18)
Co1—O4W—H4WA116.2O3—C8—C2118.29 (17)
Co1—O4W—H4WB116.2O4—C8—C2116.53 (17)
H4WA—O4W—H4WB109.6N2—C9—N1113.50 (17)
C9—N1—C5107.24 (16)N2—C9—H9A123.3
C9—N1—H1A126.4N1—C9—H9A123.3
C5—N1—H1A126.4H2WA—O2W—H2WB102.3
C9—N2—C4104.80 (16)
O4i—Co1—N2—C9158.93 (16)C3—C4—C5—N1−177.40 (18)
O4W—Co1—N2—C9−109.92 (17)N2—C4—C5—N11.9 (2)
O3W—Co1—N2—C967.21 (17)C3—C4—C5—C63.7 (3)
O2ii—Co1—N2—C9−18.39 (18)N2—C4—C5—C6−177.00 (18)
O1ii—Co1—N2—C9−23.1 (3)N1—C5—C6—C1179.8 (2)
C7ii—Co1—N2—C9−18.9 (2)C4—C5—C6—C1−1.6 (3)
O4i—Co1—N2—C4−3.25 (19)C2—C1—C6—C5−0.9 (3)
O4W—Co1—N2—C487.90 (18)C7—C1—C6—C5−178.77 (17)
O3W—Co1—N2—C4−94.97 (18)Co1iii—O1—C7—O21.72 (18)
O2ii—Co1—N2—C4179.43 (17)Co1iii—O1—C7—C1−178.23 (15)
O1ii—Co1—N2—C4174.76 (16)Co1iii—O2—C7—O1−1.74 (18)
C7ii—Co1—N2—C4178.90 (16)Co1iii—O2—C7—C1178.21 (15)
C6—C1—C2—C31.4 (3)C6—C1—C7—O1−30.8 (3)
C7—C1—C2—C3179.21 (18)C2—C1—C7—O1151.34 (18)
C6—C1—C2—C8176.81 (17)C6—C1—C7—O2149.27 (18)
C7—C1—C2—C8−5.4 (3)C2—C1—C7—O2−28.6 (3)
C1—C2—C3—C40.6 (3)Co1i—O4—C8—O30.8 (3)
C8—C2—C3—C4−175.08 (17)Co1i—O4—C8—C2−175.08 (12)
C2—C3—C4—N2177.8 (2)C3—C2—C8—O3−62.2 (2)
C2—C3—C4—C5−3.1 (3)C1—C2—C8—O3122.2 (2)
C9—N2—C4—C3177.6 (2)C3—C2—C8—O4114.0 (2)
Co1—N2—C4—C3−17.9 (3)C1—C2—C8—O4−61.7 (2)
C9—N2—C4—C5−1.6 (2)C4—N2—C9—N10.7 (2)
Co1—N2—C4—C5162.99 (14)Co1—N2—C9—N1−165.38 (14)
C9—N1—C5—C6177.3 (2)C5—N1—C9—N20.4 (2)
C9—N1—C5—C4−1.4 (2)

Symmetry codes: (i) −x, −y, −z; (ii) x+1/2, −y+1/2, z+1/2; (iii) x−1/2, −y+1/2, z−1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3W—H3WA···O1iv0.841.972.798 (2)170
N1—H1A···O1Wiv0.862.453.130 (2)136
O2W—H2WA···O4iv0.841.992.78546157
O3W—H3WB···O3i0.841.852.641 (2)158
O4W—H4WB···O3v0.842.603.095 (2)119
O4W—H4WA···O2v0.841.862.679 (2)165
O4W—H4WB···O2Wvi0.842.022.76864148
N1—H1A···O2W0.862.312.89857125
O1W—H1W···O3vii0.841.982.8218 (18)180
O2W—H2WB···O3Wviii0.842.162.94922157

Symmetry codes: (iv) −x, −y+1, −z; (i) −x, −y, −z; (v) −x, y, −z−1/2; (vi) x, y−1, z; (vii) x, −y, z+1/2; (viii) −x+1/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2948).

References

  • Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Grodzicki, A., Lakomsk, I., Piszczek, P., Szymanska, I. & Szlyk, Z. (2005). Coord. Chem. Rev. 249, 2232–2258.
  • Laduca, R. L. (2009). Coord. Chem. Rev. 253, 1759–1792.
  • Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wei, Y. Q., Yu, Y. F. & Wu, K. C. (2008). Cryst. Growth Des. 8, 2087–2089.
  • Xu, K. & Yu, L.-P. (2009). Acta Cryst. E65, m295. [PMC free article] [PubMed]
  • Yao, Y. L., Che, Y. X. & Zheng, J. M. (2008). Cryst. Growth Des. 8, 2299–2306.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography