PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): o3104–o3105.
Published online 2009 November 18. doi:  10.1107/S1600536809047631
PMCID: PMC2971875

2-(4H-1,3-Benzoxazin-2-yl)phenol

Abstract

The title compound, C14H11NO2, features an essentially planar mol­ecule, the r.m.s. deviation for the 17 non-H atoms being 0.035 Å. This conformation is stabilized by an intra­molecular O—H(...)N hydrogen bond that results in the formation of an S(6) ring. In the crystal structure, methyl­ene–hydr­oxy C—H(...)O contacts result in a supra­molecular chain aligned along the b axis.

Related literature

For general background to the synthesis, see: Hunter & Sims (1972a [triangle],b [triangle]); Corey, & Kühnle (1997 [triangle]); Larter et al. (1998 [triangle]); Chou et al. (2004 [triangle]); Fernandes et al. (2007 [triangle]). For the reactions of 2-hydroxy­benzaldehyde derivatives, see; Kitan et al. (1990 [triangle]); Kanakarajan et al. (1975 [triangle]); Meier et al. (1979 [triangle]); Beer et al. (1948 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o3104-scheme1.jpg

Experimental

Crystal data

  • C14H11NO2
  • M r = 225.24
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o3104-efi1.jpg
  • a = 14.1148 (8) Å
  • b = 5.1725 (2) Å
  • c = 15.8813 (8) Å
  • β = 115.032 (2)°
  • V = 1050.57 (9) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 120 K
  • 0.55 × 0.08 × 0.08 mm

Data collection

  • Bruker–Nonius 95mm CCD camera on κ-goniostat diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003 [triangle]) T min = 0.949, T max = 0.992
  • 10487 measured reflections
  • 1841 independent reflections
  • 1479 reflections with I > 2σ(I)
  • R int = 0.066

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048
  • wR(F 2) = 0.122
  • S = 1.07
  • 1841 reflections
  • 158 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.32 e Å−3
  • Δρmin = −0.32 e Å−3

Data collection: COLLECT (Hooft, 1998 [triangle]); cell refinement: DENZO (Otwinowski & Minor, 1997 [triangle]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809047631/lh2952sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809047631/lh2952Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil).

supplementary crystallographic information

Comment

Reactions of various arene-aldehydes, ArCHO, e.g. Ar = Ph, thien-2-yl and pyridin2-yl, with ammonia, under basic conditions, have provided rac-2,4,5-Ar3-4,5-dihydro-1H-imidazoles, 1 (Hunter & Sims, 1972a, b; Corey, & Kühnle, 1997; Larter et al., 1998; Chou et al., 2004), see Fig. 3, either as the kinetic product, the cis-isomer, or the thermodynamic product, the trans-isomer. We reported similar products from these aldehydes using the mixture of NH4Cl and NEt3 as the ammonia source in MeOH (Fernandes et al., 2007). In contrast, we have found that 2-hydroxybenzaldehyde, under these conditions produced (2: R = H).

The reaction of 2-hydroxybenzaldehyde with ammonia had previously been studied as a function of solvent (Kitan et al., 1990). Thus in C6H6, hexane or Et2O, 2-HOC6H4CHNH was formed. In H2O, dioxan, MeOH or EtOH solution 2-HOC6H4CH(NCHC6H4OH-2)2 (3), was the product, while in MeOH with NH4OAc and NH4HCO3, both 3 and 4 were formed. Earlier, it had been reported that 2-hydroxybenzaldehyde, NH4OAc and HOAc in refluxing C6H6 produced 4 (Kanakarajan et al., 1975). Interestingly, (2: R = H) has been shown to arise from the acid-catalysed decomposition of 4, alternatively obtained as the cyclo-condensation product of 2-hydroxybenzaldehyde with HONH2 (Meier et al., 1979).

While the NMR spectra, in particular the two hydrogen singlet in the 1H NMR spectrum, suggested the compound (2: R = H) confirmation from the X-ray structure determination was considered to be of value, particularly since treatment of 6-nitro-2-hydroxybenzaldehyde with NH4OAc in acetic acid had been reported to give 5 (Beer et al., 1948). However, no spectral details had been provided for 5. In the light of our findings, the structure of 5 could be modified to (2: R = NO2). The change from 5 to (2: R = NO2) merely involves a prototropic rearrangement. Herein, the crystal and molecular structure of (I) [= 2: R = H in Fig. 1] is described.

The molecular structure of (I), Fig. 2, is essentially planar with the RMS for the 17 non-hydrogen atoms being 0.035 Å. The maximum deviation is 0.049 (1) Å for the N1 atom. This conformation is stabilized by an intramolecular O–H···N hydrogen bond that completes an S(6) ring synthon. The most prominent interactions in the crystal structure are of the type C–H···O, Table 1, which lead to supramolecular chains along the b direction, Fig. 3.

Experimental

A solution of 2-hydroxybenzaldehyde (3.7 g, 0.03 mol), ammonium chloride (3 g, 0.06 mol) and triethylamine (8.1 ml, 0.06 mol) in MeOH (30 ml) was refluxed for 8 h. The solvent was removed in vacuo, the residue was extracted into CHCl3, washed with water (2 x 1 5 ml), dried over magnesium chloride, and rotary evaporated. The pale coloured residue was recrystallized from EtOH to give colourless crystals. Anal. Calc. for C14H11NO2: C, 74.65; H, 4.92; N, 6.22. Found: C, 74.32; H, 4.80; N, 6.01%. 1H NMR (Me2CO-d6, 400 MHz): δ 13.02 (s, 1H), 7.96 (dd, J = 1.6, 8.0 Hz, 1H), 7.41–7.37 (dt, J = 1.7, 8.0 Hz, 1H), 7.33–7.28 (m, 1H), 7.20–7.14 (m, 3H), 6.91 (m, 2H), 4.82 (s, 2H) p.p.m. 13C NMR (CDCl3, 100 MHz): δ 134.1, 129.4, 128.1, 127.3, 126.3, 119.1, 118.0, 116.6, 44.1 p.p.m.; quaternary-C not detected.

Refinement

The C-bound H atoms were geometrically placed (C–H = 0.95–0.99 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The hydroxyl-H was located from a difference map and refined with O–H = 0.840±0.001 Å, and with Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.
Reaction products.
Fig. 2.
Molecular structure of (I) showing the intramolecular O–H···N hydrogen bonding (orange dashed lines), the atom-labelling scheme, and displacement ellipsoids at the 50% probability level.
Fig. 3.
Supramolecular chain formation along the b axis mediated by C–H···O contacts (bue dashed lines) in the structure of (I).

Crystal data

C14H11NO2F(000) = 472
Mr = 225.24Dx = 1.424 Mg m3
Monoclinic, P2/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yacCell parameters from 10058 reflections
a = 14.1148 (8) Åθ = 2.9–27.5°
b = 5.1725 (2) ŵ = 0.10 mm1
c = 15.8813 (8) ÅT = 120 K
β = 115.032 (2)°Needle, orange
V = 1050.57 (9) Å30.55 × 0.08 × 0.08 mm
Z = 4

Data collection

Bruker–Nonius 95mm CCD camera on κ-goniostat diffractometer1841 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode1479 reflections with I > 2σ(I)
10 cm confocal mirrorsRint = 0.066
Detector resolution: 9.091 pixels mm-1θmax = 25.0°, θmin = 3.2°
[var phi] and ω scansh = −16→16
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)k = −6→6
Tmin = 0.949, Tmax = 0.992l = −18→18
10487 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.122w = 1/[σ2(Fo2) + (0.0712P)2 + 0.1735P] where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
1841 reflectionsΔρmax = 0.32 e Å3
158 parametersΔρmin = −0.32 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.031 (5)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.87956 (9)−0.1882 (2)0.76593 (8)0.0294 (3)
H1O0.8351−0.07350.73820.044*
O20.84545 (9)0.3337 (2)0.55121 (7)0.0251 (3)
N10.78226 (10)0.1846 (2)0.65809 (9)0.0225 (3)
C10.94605 (12)−0.1824 (3)0.72470 (10)0.0224 (4)
C21.02672 (13)−0.3622 (3)0.75286 (11)0.0255 (4)
H21.0334−0.48520.79950.031*
C31.09719 (13)−0.3631 (3)0.71350 (11)0.0280 (4)
H31.1518−0.48750.73290.034*
C41.08874 (13)−0.1831 (3)0.64558 (11)0.0285 (4)
H41.1375−0.18390.61880.034*
C51.00909 (12)−0.0038 (3)0.61741 (11)0.0255 (4)
H51.00390.11990.57140.031*
C60.93574 (12)−0.0004 (3)0.65525 (10)0.0210 (4)
C70.84764 (12)0.1812 (3)0.62239 (10)0.0214 (4)
C80.76543 (12)0.5157 (3)0.51535 (10)0.0218 (4)
C90.76759 (13)0.6767 (3)0.44659 (11)0.0253 (4)
H90.82160.66140.42620.030*
C100.68991 (13)0.8601 (3)0.40814 (11)0.0271 (4)
H100.69000.97110.36050.033*
C110.61167 (13)0.8827 (3)0.43898 (11)0.0277 (4)
H110.55851.00940.41270.033*
C120.61155 (12)0.7197 (3)0.50813 (11)0.0257 (4)
H120.55800.73610.52910.031*
C130.68845 (12)0.5327 (3)0.54724 (10)0.0222 (4)
C140.69092 (13)0.3531 (3)0.62239 (11)0.0252 (4)
H14A0.68980.45700.67430.030*
H14B0.62710.24500.59770.030*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0263 (7)0.0350 (7)0.0318 (7)0.0037 (5)0.0169 (6)0.0083 (5)
O20.0243 (7)0.0280 (6)0.0264 (6)0.0058 (5)0.0141 (5)0.0068 (4)
N10.0196 (7)0.0265 (8)0.0224 (7)0.0004 (5)0.0097 (6)−0.0018 (5)
C10.0207 (9)0.0248 (8)0.0220 (8)−0.0044 (6)0.0093 (7)−0.0042 (6)
C20.0253 (9)0.0244 (8)0.0241 (8)−0.0006 (7)0.0077 (7)0.0015 (6)
C30.0234 (9)0.0277 (9)0.0305 (9)0.0036 (7)0.0090 (8)−0.0017 (7)
C40.0244 (9)0.0330 (10)0.0318 (9)0.0031 (7)0.0157 (8)−0.0004 (7)
C50.0252 (9)0.0273 (9)0.0260 (8)−0.0004 (7)0.0128 (7)0.0008 (6)
C60.0182 (8)0.0228 (8)0.0200 (8)−0.0023 (6)0.0063 (7)−0.0034 (6)
C70.0220 (9)0.0216 (8)0.0197 (8)−0.0037 (6)0.0079 (7)−0.0024 (6)
C80.0191 (8)0.0217 (8)0.0219 (8)−0.0001 (6)0.0062 (7)−0.0029 (6)
C90.0240 (9)0.0277 (9)0.0257 (8)−0.0027 (7)0.0120 (7)−0.0016 (6)
C100.0298 (10)0.0250 (9)0.0239 (8)−0.0014 (7)0.0088 (7)0.0016 (6)
C110.0265 (9)0.0258 (9)0.0265 (9)0.0034 (7)0.0070 (7)−0.0011 (6)
C120.0222 (9)0.0285 (9)0.0256 (9)0.0011 (7)0.0094 (7)−0.0042 (6)
C130.0217 (9)0.0242 (8)0.0190 (8)−0.0022 (6)0.0069 (7)−0.0050 (6)
C140.0233 (9)0.0297 (9)0.0257 (8)0.0018 (7)0.0133 (7)0.0000 (6)

Geometric parameters (Å, °)

O1—C11.3530 (19)C5—H50.9500
O1—H1O0.8403C6—C71.467 (2)
O2—C71.3680 (18)C8—C131.382 (2)
O2—C81.3937 (19)C8—C91.384 (2)
N1—C71.271 (2)C9—C101.381 (2)
N1—C141.458 (2)C9—H90.9500
C1—C21.389 (2)C10—C111.390 (2)
C1—C61.410 (2)C10—H100.9500
C2—C31.381 (2)C11—C121.385 (2)
C2—H20.9500C11—H110.9500
C3—C41.391 (2)C12—C131.389 (2)
C3—H30.9500C12—H120.9500
C4—C51.378 (2)C13—C141.501 (2)
C4—H40.9500C14—H14A0.9900
C5—C61.400 (2)C14—H14B0.9900
C1—O1—H1O104.4C13—C8—C9122.28 (15)
C7—O2—C8117.29 (12)C13—C8—O2121.33 (13)
C7—N1—C14121.61 (13)C9—C8—O2116.39 (13)
O1—C1—C2118.12 (14)C10—C9—C8118.93 (15)
O1—C1—C6122.02 (14)C10—C9—H9120.5
C2—C1—C6119.86 (14)C8—C9—H9120.5
C3—C2—C1120.39 (15)C9—C10—C11120.16 (14)
C3—C2—H2119.8C9—C10—H10119.9
C1—C2—H2119.8C11—C10—H10119.9
C2—C3—C4120.46 (15)C12—C11—C10119.75 (15)
C2—C3—H3119.8C12—C11—H11120.1
C4—C3—H3119.8C10—C11—H11120.1
C5—C4—C3119.52 (15)C11—C12—C13121.03 (15)
C5—C4—H4120.2C11—C12—H12119.5
C3—C4—H4120.2C13—C12—H12119.5
C4—C5—C6121.26 (14)C8—C13—C12117.85 (14)
C4—C5—H5119.4C8—C13—C14119.64 (14)
C6—C5—H5119.4C12—C13—C14122.51 (14)
C5—C6—C1118.50 (14)N1—C14—C13113.49 (13)
C5—C6—C7121.67 (13)N1—C14—H14A108.9
C1—C6—C7119.81 (14)C13—C14—H14A108.9
N1—C7—O2126.42 (14)N1—C14—H14B108.9
N1—C7—C6121.08 (13)C13—C14—H14B108.9
O2—C7—C6112.49 (13)H14A—C14—H14B107.7
O1—C1—C2—C3−179.47 (14)C1—C6—C7—O2−176.25 (13)
C6—C1—C2—C30.3 (2)C7—O2—C8—C13−3.2 (2)
C1—C2—C3—C40.4 (2)C7—O2—C8—C9176.88 (13)
C2—C3—C4—C5−0.2 (3)C13—C8—C9—C10−0.3 (2)
C3—C4—C5—C6−0.6 (2)O2—C8—C9—C10179.67 (13)
C4—C5—C6—C11.2 (2)C8—C9—C10—C110.5 (2)
C4—C5—C6—C7−176.86 (14)C9—C10—C11—C12−0.3 (2)
O1—C1—C6—C5178.68 (13)C10—C11—C12—C13−0.2 (2)
C2—C1—C6—C5−1.0 (2)C9—C8—C13—C12−0.2 (2)
O1—C1—C6—C7−3.2 (2)O2—C8—C13—C12179.85 (13)
C2—C1—C6—C7177.07 (13)C9—C8—C13—C14−179.68 (14)
C14—N1—C7—O22.7 (2)O2—C8—C13—C140.4 (2)
C14—N1—C7—C6−176.26 (13)C11—C12—C13—C80.4 (2)
C8—O2—C7—N11.7 (2)C11—C12—C13—C14179.89 (15)
C8—O2—C7—C6−179.26 (11)C7—N1—C14—C13−5.1 (2)
C5—C6—C7—N1−179.12 (14)C8—C13—C14—N13.6 (2)
C1—C6—C7—N12.8 (2)C12—C13—C14—N1−175.88 (13)
C5—C6—C7—O21.8 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1O···N10.841.782.5586 (16)154
C14—H14A···O1i0.992.453.3551 (19)151

Symmetry codes: (i) −x+3/2, y+1, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2952).

References

  • Beer, R. J. S., Clarke, K., Khorana, H. G. & Robertson, A. (1948). J. Chem. Soc. pp. 1605–1609. [PubMed]
  • Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  • Chou, C.-H., Chu, L.-T., Chiu, S. J., Lee, C.-F. & She, Y. T. (2004). Tetrahedron, 60, 6581–6584.
  • Corey, E. J. & Kühnle, F. N. M. (1997). Tetrahedron Lett. 38, 8631–8634.
  • Fernandes, C., Horn, A., Howie, R. A., Scripsma, J., Skakle, J. M. S. & Wardell, J. L. (2007). J. Mol. Struct. 837, 274–283.
  • Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
  • Hunter, D. H. & Sims, S. K. (1972a). Can. J. Chem. 50, 669–677.
  • Hunter, D. H. & Sims, S. K. (1972b). Can. J. Chem. 50, 678–689.
  • Kanakarajan, K., Ramakrishnan, V. T. & Shanmugam, P. (1975). Synthesis, pp. 501–502.
  • Kitan, S., Ashraf, C. M. & Ehsan, A. (1990). Pak. J. Sci. Ind. Res. 33, 525–530.
  • Larter, L., Phillips, M., Ortega, F., Somanathan, R. & Walsh, P. J. (1998). Tetrahedron Lett. 39, 4785–4788.
  • Meier, H., Issa, A. & Merkle, U. (1979). Z. Naturforsch. Teil B, 34, 290–296.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Sheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2009). publCIF. In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography