PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): o3097.
Published online 2009 November 14. doi:  10.1107/S1600536809047540
PMCID: PMC2971873

2-(3,4,5-Trimethoxy­phen­yl)-1H-pyrrolo[2,3-b]pyridine

Abstract

In the title compound, C16H16N2O3, the 3,4,5-trimethoxy­phenyl group makes a dihedral angle of 10.04 (7)° toward the 1H-pyrrolo[2,3-b]pyridine system. The crystal structure displays inter­molecular N—H(...)N hydrogen bonds, forming inversion dimers.

Related literature

For the synthesis of the title copmpound, see: Davis et al. (1992 [triangle])

An external file that holds a picture, illustration, etc.
Object name is e-65-o3097-scheme1.jpg

Experimental

Crystal data

  • C16H16N2O3
  • M r = 284.31
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o3097-efi1.jpg
  • a = 7.6283 (9) Å
  • b = 10.1745 (4) Å
  • c = 18.604 (2) Å
  • β = 104.778 (6)°
  • V = 1396.2 (2) Å3
  • Z = 4
  • Cu Kα radiation
  • μ = 0.78 mm−1
  • T = 193 K
  • 0.40 × 0.40 × 0.25 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: none
  • 2865 measured reflections
  • 2657 independent reflections
  • 2352 reflections with I > 2σ(I)
  • R int = 0.020
  • 3 standard reflections frequency: 60 min intensity decay: 2%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.125
  • S = 1.07
  • 2657 reflections
  • 193 parameters
  • H-atom parameters constrained
  • Δρmax = 0.20 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 Software; data reduction: CORINC (Dräger & Gattow, 1971 [triangle]); program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809047540/im2158sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809047540/im2158Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors would like to thank the Federal Ministry of Education and Research, Germany, Merckle GmbH, Ulm, Germany, and the Fonds der Chemischen Industrie, Germany, for their generous support of this work.

supplementary crystallographic information

Comment

7-Azaindoles are found in natural and synthetic compounds of biological interest. The interest in 7-azaindoles as indole analogues has arisen in recent years due to their improved physicochemical and pharmacological properties. The substitution of this heterocycle is widely studied and used in synthesis of many compounds of potential pharmaceutical interest. The 3,4,5-trimethoxyphenyl moiety encloses a dihedral angle of 10.04 (7)° toward the 1H-pyrrolo[2,3-b]pyridine system. The crystal structure of 2-(3,4,5-trimethoxyphenyl)-1H-pyrrolo[2,3-b]pyridine, C16H16N2O3, is characterized by an intermolecular hydrogen bond N1–H1···N7 (2.12 Å).

Experimental

3-Methylpyridine (0.68 g 7.25 mmol) was added dropwise to a freshly prepared solution of LDA in THF (2M) (3.6 ml 7.25 mmol) at 273 K. The resulting suspension was stirred at 273 K for 30 min. Trimethoxybenzonitrile (1.4 g 7.25 mmol) was added dropwise at such a rate that the temperature did not rise above 283 K. Stirring was continued for 60 min. at 273 K. Another portion of LDA solution (3.6 ml 7.25 mmol) was added and stirring was continued for 10 h at 353 K. The final reaction mixture was allowed to cool and ice-water was added. The mixture was extracted with ethylacetate and the combined extracts were dried (Na2SO4) and the solvent was evaporated under reduced pressure. The residue was subjected to flash chromatography. The title compound was obtained in a yield of 67% (1.37 g 4.83 mmol). Crystals suitable for X-ray diffraction were obtained by slow evaporation of the solvent (methanol) during several weeks.

Refinement

Hydrogen atoms attached to carbon were placed at calculated positions with C—H = 0.95 Å (aromatic) or 0.98–0.99 Å (sp3 C-atom). The H atom attached to N1 was located in difference Fourier maps. All H atoms were refined using the riding-model approximation with isotropic displacement parameters (set at 1.2–1.5 times of the Ueq of the parent atom).

Figures

Fig. 1.
View of compound I. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

C16H16N2O3F(000) = 600
Mr = 284.31Dx = 1.353 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 7.6283 (9) Åθ = 66–70°
b = 10.1745 (4) ŵ = 0.78 mm1
c = 18.604 (2) ÅT = 193 K
β = 104.778 (6)°Plate, colourless
V = 1396.2 (2) Å30.40 × 0.40 × 0.25 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometerRint = 0.020
Radiation source: rotating anodeθmax = 70.0°, θmin = 4.9°
graphiteh = −9→0
ω/2θ scansk = 0→12
2865 measured reflectionsl = −21→22
2657 independent reflections3 standard reflections every 60 min
2352 reflections with I > 2σ(I) intensity decay: 2%

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.07w = 1/[σ2(Fo2) + (0.0641P)2 + 0.5259P] where P = (Fo2 + 2Fc2)/3
2657 reflections(Δ/σ)max < 0.001
193 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = −0.20 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.62152 (18)0.53967 (13)0.42466 (7)0.0312 (3)
H10.63990.48020.46530.037*
C20.7269 (2)0.55266 (16)0.37403 (8)0.0308 (3)
C30.6670 (2)0.65831 (17)0.32906 (9)0.0360 (4)
H30.71580.68880.28990.043*
C3A0.5187 (2)0.71430 (17)0.35131 (9)0.0344 (4)
C40.4017 (3)0.82022 (19)0.32915 (10)0.0451 (4)
H40.41200.87620.28960.054*
C50.2705 (3)0.8406 (2)0.36686 (11)0.0524 (5)
H50.18880.91230.35360.063*
C60.2568 (3)0.7568 (2)0.42413 (11)0.0492 (5)
H60.16290.77360.44810.059*
N70.3663 (2)0.65397 (15)0.44823 (8)0.0381 (4)
C7A0.4931 (2)0.63661 (16)0.41105 (9)0.0310 (3)
C80.8710 (2)0.45896 (16)0.37109 (8)0.0307 (3)
C90.9838 (2)0.48432 (16)0.32401 (9)0.0330 (4)
H90.97110.56400.29660.040*
C101.1137 (2)0.39363 (17)0.31741 (9)0.0324 (4)
C111.1358 (2)0.27617 (16)0.35828 (9)0.0313 (3)
C121.0243 (2)0.25251 (16)0.40535 (9)0.0326 (4)
C130.8925 (2)0.34277 (16)0.41142 (9)0.0338 (4)
H130.81640.32490.44350.041*
O141.22631 (17)0.40749 (13)0.27123 (7)0.0439 (3)
C151.1984 (3)0.5172 (2)0.22231 (10)0.0454 (5)
H15A1.07200.51860.19290.068*
H15B1.27870.51030.18890.068*
H15C1.22530.59840.25130.068*
O161.25139 (16)0.17927 (12)0.34718 (7)0.0376 (3)
C171.4407 (2)0.2090 (2)0.37068 (11)0.0458 (4)
H17A1.47220.27110.33570.069*
H17B1.51100.12810.37210.069*
H17C1.46840.24840.42040.069*
O181.03203 (16)0.13515 (12)0.44277 (7)0.0399 (3)
C191.1896 (3)0.1164 (2)0.50170 (11)0.0518 (5)
H19A1.29530.10620.48130.078*
H19B1.17530.03720.52970.078*
H19C1.20730.19280.53490.078*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0357 (7)0.0303 (7)0.0307 (7)0.0044 (5)0.0140 (5)0.0038 (5)
C20.0334 (8)0.0312 (8)0.0295 (7)−0.0014 (6)0.0112 (6)−0.0015 (6)
C30.0419 (9)0.0371 (9)0.0310 (8)0.0024 (7)0.0134 (7)0.0049 (7)
C3A0.0397 (9)0.0348 (8)0.0283 (8)0.0025 (7)0.0082 (6)0.0019 (6)
C40.0566 (11)0.0429 (10)0.0369 (9)0.0136 (9)0.0135 (8)0.0129 (8)
C50.0596 (12)0.0519 (12)0.0470 (10)0.0276 (10)0.0161 (9)0.0138 (9)
C60.0513 (11)0.0563 (12)0.0445 (10)0.0241 (9)0.0203 (8)0.0092 (9)
N70.0427 (8)0.0400 (8)0.0345 (7)0.0116 (6)0.0149 (6)0.0044 (6)
C7A0.0346 (8)0.0298 (8)0.0281 (7)0.0025 (6)0.0072 (6)−0.0008 (6)
C80.0328 (8)0.0304 (8)0.0301 (7)−0.0012 (6)0.0101 (6)−0.0018 (6)
C90.0383 (8)0.0310 (8)0.0317 (8)−0.0001 (7)0.0127 (7)0.0024 (6)
C100.0358 (8)0.0356 (9)0.0289 (7)−0.0028 (7)0.0138 (6)−0.0018 (6)
C110.0334 (8)0.0300 (8)0.0318 (8)0.0003 (6)0.0104 (6)−0.0045 (6)
C120.0361 (8)0.0287 (8)0.0339 (8)−0.0024 (6)0.0109 (6)0.0016 (6)
C130.0347 (8)0.0360 (9)0.0346 (8)−0.0002 (7)0.0162 (7)0.0027 (7)
O140.0502 (7)0.0475 (8)0.0431 (7)0.0089 (6)0.0285 (6)0.0092 (6)
C150.0417 (9)0.0565 (12)0.0424 (10)−0.0042 (8)0.0184 (8)0.0123 (8)
O160.0388 (6)0.0343 (6)0.0422 (6)0.0041 (5)0.0148 (5)−0.0042 (5)
C170.0393 (10)0.0520 (11)0.0466 (10)0.0033 (8)0.0121 (8)−0.0037 (9)
O180.0414 (7)0.0327 (6)0.0457 (7)−0.0015 (5)0.0113 (5)0.0095 (5)
C190.0540 (12)0.0544 (12)0.0426 (10)−0.0083 (9)0.0041 (9)0.0139 (9)

Geometric parameters (Å, °)

N1—C7A1.367 (2)C10—O141.3681 (19)
N1—C21.3917 (19)C10—C111.403 (2)
N1—H10.9499C11—O161.3729 (19)
C2—C31.367 (2)C11—C121.389 (2)
C2—C81.467 (2)C12—O181.3758 (19)
C3—C3A1.419 (2)C12—C131.387 (2)
C3—H30.9500C13—H130.9500
C3A—C41.393 (2)O14—C151.422 (2)
C3A—C7A1.417 (2)C15—H15A0.9800
C4—C51.377 (3)C15—H15B0.9800
C4—H40.9500C15—H15C0.9800
C5—C61.389 (3)O16—C171.430 (2)
C5—H50.9500C17—H17A0.9800
C6—N71.343 (2)C17—H17B0.9800
C6—H60.9500C17—H17C0.9800
N7—C7A1.336 (2)O18—C191.418 (2)
C8—C131.387 (2)C19—H19A0.9800
C8—C91.400 (2)C19—H19B0.9800
C9—C101.382 (2)C19—H19C0.9800
C9—H90.9500
C7A—N1—C2108.43 (13)O14—C10—C11114.85 (14)
C7A—N1—H1124.1C9—C10—C11120.66 (14)
C2—N1—H1127.2O16—C11—C12119.38 (15)
C3—C2—N1109.17 (14)O16—C11—C10121.53 (14)
C3—C2—C8128.68 (14)C12—C11—C10118.76 (14)
N1—C2—C8122.09 (14)O18—C12—C13118.16 (14)
C2—C3—C3A107.69 (14)O18—C12—C11121.02 (14)
C2—C3—H3126.2C13—C12—C11120.64 (15)
C3A—C3—H3126.2C12—C13—C8120.57 (14)
C4—C3A—C7A117.21 (16)C12—C13—H13119.7
C4—C3A—C3136.27 (16)C8—C13—H13119.7
C7A—C3A—C3106.52 (14)C10—O14—C15117.87 (13)
C5—C4—C3A117.38 (16)O14—C15—H15A109.5
C5—C4—H4121.3O14—C15—H15B109.5
C3A—C4—H4121.3H15A—C15—H15B109.5
C4—C5—C6120.36 (17)O14—C15—H15C109.5
C4—C5—H5119.8H15A—C15—H15C109.5
C6—C5—H5119.8H15B—C15—H15C109.5
N7—C6—C5124.90 (17)C11—O16—C17116.03 (13)
N7—C6—H6117.5O16—C17—H17A109.5
C5—C6—H6117.6O16—C17—H17B109.5
C7A—N7—C6113.64 (15)H17A—C17—H17B109.5
N7—C7A—N1125.32 (14)O16—C17—H17C109.5
N7—C7A—C3A126.50 (15)H17A—C17—H17C109.5
N1—C7A—C3A108.18 (14)H17B—C17—H17C109.5
C13—C8—C9119.24 (15)C12—O18—C19115.25 (14)
C13—C8—C2121.36 (14)O18—C19—H19A109.5
C9—C8—C2119.33 (14)O18—C19—H19B109.5
C10—C9—C8120.12 (15)H19A—C19—H19B109.5
C10—C9—H9119.9O18—C19—H19C109.5
C8—C9—H9119.9H19A—C19—H19C109.5
O14—C10—C9124.47 (15)H19B—C19—H19C109.5
C7A—N1—C2—C30.71 (18)C13—C8—C9—C100.7 (2)
C7A—N1—C2—C8−176.55 (14)C2—C8—C9—C10−176.40 (14)
N1—C2—C3—C3A−0.21 (19)C8—C9—C10—O14177.84 (15)
C8—C2—C3—C3A176.82 (16)C8—C9—C10—C11−0.8 (2)
C2—C3—C3A—C4179.8 (2)O14—C10—C11—O16−5.2 (2)
C2—C3—C3A—C7A−0.35 (19)C9—C10—C11—O16173.52 (14)
C7A—C3A—C4—C5−0.2 (3)O14—C10—C11—C12−178.56 (14)
C3—C3A—C4—C5179.6 (2)C9—C10—C11—C120.2 (2)
C3A—C4—C5—C6−0.6 (3)O16—C11—C12—O182.1 (2)
C4—C5—C6—N71.1 (4)C10—C11—C12—O18175.55 (14)
C5—C6—N7—C7A−0.7 (3)O16—C11—C12—C13−172.96 (15)
C6—N7—C7A—N1179.77 (17)C10—C11—C12—C130.5 (2)
C6—N7—C7A—C3A−0.1 (3)O18—C12—C13—C8−175.80 (14)
C2—N1—C7A—N7179.17 (15)C11—C12—C13—C8−0.6 (2)
C2—N1—C7A—C3A−0.92 (18)C9—C8—C13—C120.0 (2)
C4—C3A—C7A—N70.6 (3)C2—C8—C13—C12177.04 (15)
C3—C3A—C7A—N7−179.31 (16)C9—C10—O14—C15−5.3 (2)
C4—C3A—C7A—N1−179.33 (15)C11—C10—O14—C15173.38 (15)
C3—C3A—C7A—N10.79 (18)C12—C11—O16—C17−117.52 (17)
C3—C2—C8—C13−167.47 (17)C10—C11—O16—C1769.2 (2)
N1—C2—C8—C139.2 (2)C13—C12—O18—C19−113.18 (18)
C3—C2—C8—C99.5 (3)C11—C12—O18—C1971.7 (2)
N1—C2—C8—C9−173.77 (14)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···N7i0.952.123.061 (2)171

Symmetry codes: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2158).

References

  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  • Davis, M. L., Wakewfield, B. J. & Wardellt, J. A. (1992). Tetrahedron, 48, 939–952.
  • Dräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761–762.
  • Enraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography