PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): o3110.
Published online 2009 November 18. doi:  10.1107/S1600536809048041
PMCID: PMC2971868

(Z)-2-Acetamido-3-(4-chloro­phen­yl)acrylic acid

Abstract

In the title compound, C11H10ClNO3, the mol­ecule consists of a benzene ring and an acetamido­acrylic acid unit on opposite sides of the C=C double bond. In the crystal, inter­molecular O—H(...)O and N—H(...)O hydrogen bonds assemble the mol­ecules into infinite two-dimensional ribbons. These ribbons are linked into a network by inter­molecular C—H(...)π contacts.

Related literature

Derivatives of 2-acetamido-3-phenyl­acrylic acid are key inter­mates in the preparations of tanshinol (Wong et al. 1992 [triangle]; Xiao, et al. 2008a [triangle]), diaryl-3-hydr­oxy-2(5H)-furan­ones (Weber et al. 2002 [triangle]; Xiao et al. 2008b [triangle]) and benzyl­azauracil (Chen et al. 1993 [triangle]; Xiao, et al. 2008c [triangle]), which show anti-platelet aggregation, anti­fungal and anti­viral activities, respectively.

An external file that holds a picture, illustration, etc.
Object name is e-65-o3110-scheme1.jpg

Experimental

Crystal data

  • C11H10ClNO3
  • M r = 239.65
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o3110-efi1.jpg
  • a = 6.2440 (12) Å
  • b = 7.5450 (15) Å
  • c = 11.813 (2) Å
  • β = 100.47 (3)°
  • V = 547.26 (19) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.34 mm−1
  • T = 298 K
  • 0.20 × 0.10 × 0.10 mm

Data collection

  • Bruker SMART APEX area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.935, T max = 0.967
  • 1160 measured reflections
  • 1060 independent reflections
  • 895 reflections with I > 2σ(I)
  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052
  • wR(F 2) = 0.229
  • S = 1.01
  • 1060 reflections
  • 148 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.32 e Å−3
  • Δρmin = −0.35 e Å−3

Data collection: SMART (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809048041/bq2173sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809048041/bq2173Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This research was supported financially by the Key Laboratory of Hunan Forest Products and Chemical Industry Engineering of Hunan Province (grant No. JDZ200905).

supplementary crystallographic information

Comment

Derivatives of 2-acetamido-3-phenylacrylic acid are key intermates for tanshinol (Wong et al. 1992; Xiao, et al. 2008a), diaryl-3-hydroxy-2(5H)-furanones (Weber et al. 2002; Xiao et al. 2008b) and benzylazauracil (Chen et al. 1993; Xiao, et al. 2008c), which show anti-platelet aggregation, antifungal and antiviral activities, respectively. In the course of our work on screening for anticancers, we synthesized the title compound and herein reported its crystal structure.

In the title compound (I), the plane of benzene ring (with mean dieviation deviation of 0.0053 Å) and the plane of hydroxy acrylic moiety (with mean deviation of 0.0049 Å) make a dihedral angle of 18.001 (97) Å. The benzene ring and the carboxy group occur on opposite side of the C8═C9 double bond with torsion angle of 179.8 (4) ° (Fig. 1). Intermolecular O—H···O and N—H···O hydrogen bonds (Table 1) assemble the molecules into an infinite two-dimensional ribbon. This ribbons further form a network via C—H···pi contact (Fig. 2).

Experimental

The mixture of alpha-acetoaminocinnamic acid (2.35 g, 10 mmol) in 0.5M HCl (60 mL) was refluxed for 3 h. The resulting mixture was allowed to cool to room temperature and the resulting precipitate was collected by filtration. The crude product was dissolved in EtOAc and twofold volume of petroleum was added carefully. Colorless blocks of (I) suitable for single-crystal structure determination was furnished after 2 d.

Refinement

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H of 0.93 Å for the aromatic atoms and =CH groups, 0.96 Å for the CH3 groups, 0.82 Å for the OH groups and 0.86 Å for the NH groups. Uiso(H) values were set at 1.2 times Ueq(C) for aromatic C double bond C groups, 1.5 times Ueq(C) for CH3 and 1.5 times Ueq(O) for O—H groups. Because the absolute structure parameter is meaningless with a rather poor accuracy, the chemical absolute configuration could not be determined unambiguously

Figures

Fig. 1.
A view of (I), with the atom-numbering scheme and 30% probability displacement ellipsoids.
Fig. 2.
An infinite two-dimensional ribbon is formed through intermolecular O—H···O hydrogen bonds. Dashed lines indicate hydrogen bonds and solid dashed lines indicate C—H···π contacts.

Crystal data

C11H10ClNO3F(000) = 248
Mr = 239.65Dx = 1.454 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 775 reflections
a = 6.2440 (12) Åθ = 1.9–24.7°
b = 7.5450 (15) ŵ = 0.34 mm1
c = 11.813 (2) ÅT = 298 K
β = 100.47 (3)°Block, colorless
V = 547.26 (19) Å30.20 × 0.10 × 0.10 mm
Z = 2

Data collection

Bruker SMART APEX area-detector diffractometer1060 independent reflections
Radiation source: fine-focus sealed tube895 reflections with I > 2σ(I)
graphiteRint = 0.036
[var phi] and ω scansθmax = 25.2°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = 0→7
Tmin = 0.935, Tmax = 0.967k = 0→9
1160 measured reflectionsl = −14→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.229H-atom parameters constrained
S = 1.01w = 1/[σ2(Fo2) + (0.2P)2] where P = (Fo2 + 2Fc2)/3
1060 reflections(Δ/σ)max = 0.001
148 parametersΔρmax = 0.32 e Å3
1 restraintΔρmin = −0.35 e Å3

Special details

Experimental. We have re-refined our data by using 'MERG 1' instruction to avoid Friedel opposites being merged. The absolute structure parameter is still meaningless, though the data/parameter (985/148) is higher than the former (895/148).
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl−0.0425 (4)0.7267 (4)0.74675 (17)0.0628 (8)
C10.3337 (10)0.6719 (8)0.4546 (5)0.0297 (14)
N10.2032 (8)0.7163 (9)0.1907 (4)0.0333 (13)
H10.08600.67150.20710.06 (3)*
O10.7621 (7)0.6067 (9)0.2131 (5)0.0529 (16)
C20.1323 (11)0.7587 (9)0.4407 (6)0.0360 (16)
H20.07260.80450.36880.043*
O20.4735 (8)0.5437 (10)0.0782 (5)0.0579 (17)
H2A0.56570.51930.03930.087*
C30.0201 (13)0.7786 (10)0.5294 (6)0.0422 (18)
H3−0.11340.83680.51770.051*
O30.3510 (8)0.9179 (9)0.0890 (4)0.0496 (15)
C40.1089 (13)0.7102 (11)0.6378 (6)0.0436 (18)
C50.3095 (13)0.6317 (12)0.6558 (6)0.0480 (19)
H50.37010.59150.72910.058*
C60.4220 (11)0.6116 (11)0.5683 (6)0.0424 (18)
H60.55820.55770.58250.051*
C70.4613 (10)0.6378 (10)0.3662 (6)0.0337 (14)
H70.60120.59500.39240.040*
C80.4067 (10)0.6591 (10)0.2525 (6)0.0352 (15)
C90.5701 (10)0.6022 (10)0.1796 (6)0.0372 (16)
C100.1874 (11)0.8392 (10)0.1065 (5)0.0363 (15)
C11−0.0380 (12)0.8731 (13)0.0403 (6)0.050 (2)
H11A−0.02950.9462−0.02520.075*
H11B−0.12270.93230.08910.075*
H11C−0.10590.76240.01490.075*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl0.0756 (15)0.0751 (15)0.0438 (10)−0.0037 (13)0.0266 (10)−0.0043 (11)
C10.028 (3)0.032 (3)0.026 (3)−0.003 (3)−0.001 (2)0.002 (2)
N10.027 (3)0.045 (3)0.032 (2)0.000 (3)0.016 (2)0.004 (3)
O10.025 (2)0.077 (4)0.057 (3)0.003 (3)0.005 (2)0.000 (3)
C20.041 (4)0.033 (4)0.034 (3)0.008 (3)0.006 (3)0.004 (3)
O20.033 (2)0.084 (4)0.058 (3)−0.001 (3)0.012 (2)−0.034 (4)
C30.037 (4)0.046 (4)0.045 (4)0.004 (3)0.011 (3)0.000 (3)
O30.047 (3)0.063 (4)0.041 (3)−0.013 (3)0.015 (2)0.014 (3)
C40.051 (4)0.038 (4)0.040 (4)−0.008 (4)0.003 (3)−0.002 (3)
C50.059 (5)0.054 (5)0.030 (3)−0.005 (4)0.005 (3)0.006 (3)
C60.038 (4)0.046 (4)0.039 (4)0.012 (3)−0.004 (3)0.008 (3)
C70.027 (3)0.035 (3)0.040 (3)0.002 (3)0.006 (2)0.002 (3)
C80.029 (3)0.034 (3)0.045 (4)0.000 (3)0.014 (3)0.003 (3)
C90.033 (3)0.044 (4)0.041 (4)−0.004 (3)0.022 (3)−0.002 (3)
C100.040 (3)0.044 (4)0.029 (3)0.005 (3)0.016 (3)−0.003 (3)
C110.054 (4)0.057 (5)0.034 (3)0.011 (4)−0.006 (3)0.006 (4)

Geometric parameters (Å, °)

Cl—C41.734 (8)C3—H30.9300
C1—C21.401 (9)O3—C101.231 (9)
C1—C61.430 (9)C4—C51.367 (12)
C1—C71.446 (9)C5—C61.360 (11)
N1—C101.350 (9)C5—H50.9300
N1—C81.413 (9)C6—H60.9300
N1—H10.8600C7—C81.334 (11)
O1—C91.193 (8)C7—H70.9300
C2—C31.370 (11)C8—C91.512 (8)
C2—H20.9300C10—C111.502 (10)
O2—C91.316 (9)C11—H11A0.9600
O2—H2A0.8200C11—H11B0.9600
C3—C41.398 (11)C11—H11C0.9600
C2—C1—C6116.3 (6)C5—C6—H6119.5
C2—C1—C7126.8 (6)C1—C6—H6119.5
C6—C1—C7116.9 (6)C8—C7—C1129.2 (6)
C10—N1—C8121.9 (6)C8—C7—H7115.4
C10—N1—H1119.0C1—C7—H7115.4
C8—N1—H1119.0C7—C8—N1126.8 (6)
C3—C2—C1122.3 (6)C7—C8—C9117.6 (6)
C3—C2—H2118.8N1—C8—C9115.4 (6)
C1—C2—H2118.8O1—C9—O2125.3 (6)
C9—O2—H2A109.5O1—C9—C8123.0 (6)
C4—C3—C2119.2 (7)O2—C9—C8111.7 (5)
C4—C3—H3120.4O3—C10—N1120.2 (6)
C2—C3—H3120.4O3—C10—C11123.9 (7)
C3—C4—C5120.1 (7)N1—C10—C11115.9 (6)
C3—C4—Cl118.3 (6)C10—C11—H11A109.5
C5—C4—Cl121.6 (6)C10—C11—H11B109.5
C4—C5—C6121.0 (7)H11A—C11—H11B109.5
C4—C5—H5119.5C10—C11—H11C109.5
C6—C5—H5119.5H11A—C11—H11C109.5
C5—C6—C1121.0 (6)H11B—C11—H11C109.5
C6—C1—C2—C3−2.8 (10)C6—C1—C7—C8170.8 (8)
C7—C1—C2—C3177.5 (7)C1—C7—C8—N1−2.2 (13)
C1—C2—C3—C40.0 (11)C1—C7—C8—C9−176.5 (7)
C2—C3—C4—C52.9 (12)C10—N1—C8—C7134.8 (8)
C2—C3—C4—Cl−176.7 (6)C10—N1—C8—C9−50.8 (9)
C3—C4—C5—C6−2.9 (13)C7—C8—C9—O1−30.5 (11)
Cl—C4—C5—C6176.6 (6)N1—C8—C9—O1154.6 (8)
C4—C5—C6—C10.0 (12)C7—C8—C9—O2147.7 (8)
C2—C1—C6—C52.8 (11)N1—C8—C9—O2−27.2 (10)
C7—C1—C6—C5−177.5 (7)C8—N1—C10—O3−7.2 (11)
C2—C1—C7—C8−9.5 (12)C8—N1—C10—C11174.0 (6)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.092.933 (7)165
O2—H2A···O3ii0.821.862.606 (7)152
C3—H3···Cg1iii0.932.853.523 (8)130

Symmetry codes: (i) x−1, y, z; (ii) −x+1, y−1/2, −z; (iii) −x, y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2173).

References

  • Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chen, Y.-L., Chen, S.-J., Lee, K.-H., Huang, B.-R. & Tzeng, C.-C. (1993). Nucleosides Nucleotides Nucleic Acids, 12, 925–940.
  • Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Weber, V., Coudert, P., Rubat, C., Duroux, E., Vallee-Goyet, D., Gardette, D., Bria, M., Albuisson, E., Leal, F., Gramain, J.-C., Couquelet, J. & Madesclaire, M. (2002). Bioorg. Med. Chem. 10, 1647–1658. [PubMed]
  • Wong, H. N. C., Le, X. Z., Hson, M. C. & Chi, M. L. (1992). Synthesis, 8, 793–797.
  • Xiao, Z.-P., Li, H.-Q., Shi, L., Lv, P.-C., Song, Z.-C. & Zhu, H.-L. (2008b). ChemMedChem, 3, 1077–1083. [PubMed]
  • Xiao, Z.-P., Li, H.-Q., Xue, J.-Y., Shi, L. & Zhu, H.-L. (2008a). Synth. Commun. 38, 525–529.
  • Xiao, Z.-P., Lv, P.-C., Xu, S.-P., Zhu, T.-T. & Zhu, H.-L. (2008c). ChemMedChem, 3, 1516–1519. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography