PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): m1575–m1576.
Published online 2009 November 14. doi:  10.1107/S1600536809047242
PMCID: PMC2971857

[N,N-Bis(diphenyl­phosphino)propyl­amine-κ2 P,P]bromidotricarbonyl­rhenium(I)

Abstract

In the title compound, [ReBr(C27H27NP2)(CO)3], the ReI atom is octa­hedrally surrounded by three carbonyl ligands in a facial arrangement, a bromide ligand and the P,P′-bidentate ligand Bis(diphenyl­phosphino)propyl­amine. The compound exhibits substitutional disorder of the bromide ligand and the axial carbonyl ligand, with almost 50% occupancy for both Br amd CO [0.538 (4) and 0.462 (4), respectively]. In addition, the propyl chain on the N atom of the bidentate ligand exhibits a 0.648 (9):0.352 (9) disorder. C—H(...)O and C—H(...)Br hydrogen bonding consolidates the crystal packing.

Related literature

For the synthesis of the ReI-tricarbonyl synthon: Alberto et al. (1996 [triangle]). For the synthesis and structures of related complexes: Graziani & Casellato (1996 [triangle]); Kemp (2006 [triangle]); Mundwiler et al. (2004 [triangle]); Rossi et al. (1993 [triangle]); Schutte & Visser (2008 [triangle]); Schutte & et al. (2007 [triangle], 2008 [triangle]); Steil et al. (1989 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1575-scheme1.jpg

Experimental

Crystal data

  • [ReBr(C27H27NP2)(CO)3]
  • M r = 777.58
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1575-efi1.jpg
  • a = 11.0120 (2) Å
  • b = 17.1620 (3) Å
  • c = 15.2090 (2) Å
  • β = 96.735 (2)°
  • V = 2854.48 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 5.80 mm−1
  • T = 100 K
  • 0.10 × 0.08 × 0.05 mm

Data collection

  • Oxford Diffraction Xcalibur 3 CCD area-detector diffractometer
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006 [triangle]) T min = 0.595, T max = 0.760
  • 22483 measured reflections
  • 6863 independent reflections
  • 5197 reflections with I > 2σ(I)
  • R int = 0.046

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033
  • wR(F 2) = 0.088
  • S = 1.03
  • 6863 reflections
  • 387 parameters
  • H-atom parameters constrained
  • Δρmax = 1.95 e Å−3
  • Δρmin = −1.11 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2006 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenberg & Putz, 2004 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809047242/fi2092sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809047242/fi2092Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Thanks go to Miss. N. Cloete for the preparation of the ligand. The University of the Free State and Professor A. Roodt are gratefully aknowledged for financial support.

supplementary crystallographic information

Comment

The Re—CO bond distances of 1.866 (15) Å to 1.968 (18) Å are well within the normal range (Mundwiler et al., 2004, Kemp (2006), Schutte et al. (2008).) The rhenium(I) bromido bond distance of 2.617 (2) Å compare well with related structures (Schutte et al. (2007), Graziani et al. (1996)). The P1—Re—P2 bite angle of 66.65 (4) ° is almost identical to similar structures (Rossi et al. (1993), Steil et al. (1989) and Graziani et al. (1996)). The octahedral arrangement around the rhenium atom is slightly distorted, possibly due to the small bite angle of the bidentate ligand. Three types of intramolecular and intermolecular hydrogen bonds are observed and listed in Table 2. The compound exhibits substitutional disorder of the bromido ligand and the axial carbonyl ligand, with 53.8% occupancy for both Br amd CO. Also, the propyl chain on the nitrogen atom of the bidentate ligand exhibits a 64.8/35.2% disorder.

Experimental

[NEt4]2[Re(CO)3Br3] (100 mg, 0.130 mmol), as prepared by Alberto et al. (1996), was dissolved in 10 ml of methanol. From here, the reaction was done under a nitrogen atmosphere. The reaction mixture was heated to 37°C. Bis(diphenylphosphino)-propylamine (66.58 mg, 0.156 mmol) was added to the reaction mixture, heated to 50°C and stirred for 1 h. It was left to cool down and the precipitate was filtered off and dried under vacuum. A 84.71% yield (85.5 mg, 0.1099 mmol) was obtained. Crystals, suitable for X-ray diffraction data collection were obtained by recrystalizing from methanol.

Refinement

The aromatic H atoms were placed in geometrically idealized positions and constrained to ride on its parent atoms with Uiso(H) = 1.2Ueq(C). The aliphatic H atoms were place in geometrically idealized positions and constrained to ride on its parent atoms with Uiso(H) = 1.2Ueq(C) for methylene carbon atoms and Uiso(H) = 1.5Ueq(C) for methyl atoms. The same procedures were used for the H atom treatment of the disordered part of the molecule by using. The PART instruction was used to create both the disordered parts of the propyl group and the occupancies were determined with a interconnected free variable instruction. The highest and lowest electron density peak and hole lies within 0.89 and 0.79 Å from Re1 respectively.

Figures

Fig. 1.
Representation of the title compound, showing the numbering scheme and displacement ellipsoids (50% probability). One of the disordered propyl groups are omitted for clarity. Hydrogen atoms omitted for the same reason.

Crystal data

[ReBr(C27H27NP2)(CO)3]F(000) = 1512
Mr = 777.58Dx = 1.809 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ynCell parameters from 10593 reflections
a = 11.0120 (2) Åθ = 2.2–33.2°
b = 17.1620 (3) ŵ = 5.80 mm1
c = 15.2090 (2) ÅT = 100 K
β = 96.735 (2)°Cuboid, colourless
V = 2854.48 (7) Å30.1 × 0.08 × 0.05 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur 3 CCD area-detector diffractometer6863 independent reflections
Radiation source: Enhance (Mo) X-ray Source5197 reflections with I > 2σ(I)
graphiteRint = 0.046
Detector resolution: 16.1829 pixels mm-1θmax = 28°, θmin = 2.2°
ω scansh = −11→14
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006)k = −22→21
Tmin = 0.595, Tmax = 0.760l = −20→16
22483 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.088w = 1/[σ2(Fo2) + (0.0476P)2] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
6863 reflectionsΔρmax = 1.95 e Å3
387 parametersΔρmin = −1.11 e Å3
0 restraints

Special details

Experimental. The intensity data was collected on a Oxford Diffraction Xcalibur 3 area detector diffractometer using an exposure time of 30 s/frame (Oxford, 2006a). A total of 552 frames were collected with a frame width of 0.75° covering up to θ = 28.0° with 99.5% completeness accomplized.CrysAlis RED (Oxford Diffraction Ltd, Version 1.171.31.5 (Oxford, 2006b) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Re10.686711 (18)0.106550 (11)0.202197 (12)0.02066 (7)
P20.73189 (12)0.20128 (8)0.32094 (8)0.0239 (3)
P10.85557 (12)0.19498 (7)0.17874 (8)0.0242 (3)
C20.5544 (5)0.0550 (3)0.2545 (3)0.0285 (12)
O20.4813 (4)0.0257 (2)0.2910 (3)0.0411 (10)
C340.8309 (8)0.0726 (4)0.5839 (4)0.054 (2)
H340.8490.04360.63710.064*
C350.9232 (8)0.0939 (3)0.5363 (5)0.059 (2)
H351.00510.07980.55640.071*
O10.6682 (4)−0.0050 (2)0.0405 (2)0.0438 (10)
C10.6767 (5)0.0357 (3)0.1004 (3)0.0295 (12)
C320.6847 (6)0.1351 (3)0.4772 (3)0.0330 (13)
H320.60240.14880.45760.04*
C440.4952 (6)0.4065 (3)0.3942 (4)0.0443 (17)
H440.44540.44830.40980.053*
C460.5319 (6)0.3030 (3)0.2950 (4)0.0370 (14)
H460.50820.27430.24240.044*
C310.7784 (5)0.1570 (3)0.4284 (3)0.0271 (11)
C111.0162 (5)0.1714 (3)0.1741 (3)0.0243 (11)
C260.7771 (5)0.3402 (3)0.1033 (4)0.0368 (14)
H260.75630.35470.15990.044*
C220.8530 (5)0.2457 (3)0.0066 (4)0.0332 (13)
H220.88690.196−0.0030.04*
C210.8280 (5)0.2662 (3)0.0915 (3)0.0273 (12)
C131.1832 (5)0.0804 (4)0.1978 (4)0.0382 (14)
H131.21260.02950.21290.046*
C161.0980 (5)0.2284 (3)0.1530 (3)0.0257 (11)
H161.06890.27920.13730.031*
C410.6376 (5)0.2829 (3)0.3499 (3)0.0281 (12)
C360.8976 (6)0.1362 (3)0.4586 (4)0.0413 (15)
H360.96230.1510.42580.05*
C151.2208 (5)0.2120 (3)0.1548 (3)0.0313 (12)
H151.27590.25140.14070.038*
C141.2640 (5)0.1374 (4)0.1772 (4)0.0396 (14)
H141.34850.12580.17840.048*
N10.8534 (5)0.2416 (3)0.2781 (3)0.0355 (12)
C450.4617 (6)0.3653 (4)0.3180 (4)0.0447 (16)
H450.38990.37950.28070.054*
C240.7837 (6)0.3709 (4)−0.0495 (4)0.0439 (15)
H240.7710.407−0.0970.053*
C121.0608 (5)0.0966 (3)0.1967 (3)0.0287 (12)
H121.00620.05710.21130.034*
C250.7571 (6)0.3919 (3)0.0334 (4)0.0454 (16)
H250.72480.44210.04270.054*
C230.8290 (5)0.2972 (4)−0.0641 (4)0.0407 (14)
H230.84360.282−0.1220.049*
C420.6723 (5)0.3252 (3)0.4263 (4)0.0322 (13)
H420.74480.31150.46320.039*
C430.6020 (6)0.3875 (3)0.4492 (4)0.0408 (15)
H430.6260.41680.50130.049*
C330.7130 (8)0.0925 (3)0.5559 (4)0.0489 (19)
H330.64960.07760.58970.059*
Br20.8260 (2)0.00301 (16)0.29098 (18)0.0268 (5)0.462 (4)
C3A0.5759 (17)0.1762 (8)0.1278 (10)0.027 (2)0.462 (4)
O3A0.5100 (18)0.2120 (12)0.0826 (14)0.041 (6)0.462 (4)
Br10.5387 (2)0.19542 (14)0.09865 (15)0.0254 (5)0.538 (4)
C3B0.7961 (12)0.0397 (7)0.2678 (8)0.027 (2)0.538 (4)
O3B0.8632 (15)−0.0078 (12)0.3052 (13)0.055 (6)0.538 (4)
C4B0.9665 (16)0.2791 (10)0.3419 (10)0.026 (4)0.352 (9)
H4B10.94940.2780.40430.031*0.352 (9)
H4B21.04240.24940.3370.031*0.352 (9)
C5B0.9802 (16)0.3627 (10)0.3113 (11)0.0342 (18)0.352 (9)
H5B10.99090.36370.24760.041*0.352 (9)
H5B20.90610.39310.31980.041*0.352 (9)
C6B1.090 (4)0.3979 (17)0.365 (3)0.035 (7)0.352 (9)
H6B11.10070.45170.34540.052*0.352 (9)
H6B21.16310.36750.3560.052*0.352 (9)
H6B31.07830.39750.42760.052*0.352 (9)
C4A0.9176 (8)0.3160 (5)0.2997 (5)0.025 (2)0.648 (9)
H4A10.86370.35160.32850.03*0.648 (9)
H4A20.93760.3410.24450.03*0.648 (9)
C5A1.0330 (10)0.3019 (5)0.3604 (6)0.0342 (18)0.648 (9)
H5A11.07980.25930.33620.041*0.648 (9)
H5A21.0120.28520.4190.041*0.648 (9)
C6A1.112 (2)0.3747 (10)0.3713 (18)0.046 (4)0.648 (9)
H6A11.18640.36360.41130.069*0.648 (9)
H6A21.06630.41670.39610.069*0.648 (9)
H6A31.13440.39070.31340.069*0.648 (9)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Re10.02282 (11)0.01788 (10)0.02159 (10)0.00267 (9)0.00387 (7)0.00426 (8)
P20.0250 (7)0.0247 (7)0.0234 (6)0.0020 (6)0.0084 (5)0.0003 (5)
P10.0275 (7)0.0192 (7)0.0278 (7)−0.0005 (5)0.0113 (6)−0.0025 (5)
C20.032 (3)0.021 (3)0.033 (3)0.004 (2)0.001 (2)0.009 (2)
O20.032 (2)0.045 (3)0.047 (2)−0.004 (2)0.0088 (19)0.017 (2)
C340.100 (6)0.021 (3)0.032 (3)0.007 (4)−0.025 (4)−0.006 (3)
C350.072 (5)0.025 (4)0.068 (5)0.000 (3)−0.043 (4)−0.002 (3)
O10.064 (3)0.035 (2)0.030 (2)0.011 (2)−0.004 (2)−0.0039 (19)
C10.031 (3)0.029 (3)0.029 (3)0.004 (2)0.004 (2)0.009 (2)
C320.051 (4)0.022 (3)0.026 (3)0.009 (3)0.010 (3)0.004 (2)
C440.063 (4)0.028 (3)0.047 (4)0.016 (3)0.031 (3)0.013 (3)
C460.046 (4)0.039 (3)0.029 (3)0.014 (3)0.016 (3)0.009 (2)
C310.037 (3)0.019 (3)0.026 (3)0.005 (2)0.004 (2)−0.007 (2)
C110.025 (3)0.026 (3)0.023 (2)0.000 (2)0.006 (2)−0.004 (2)
C260.044 (4)0.021 (3)0.049 (4)0.007 (3)0.020 (3)0.002 (2)
C220.035 (3)0.027 (3)0.038 (3)0.007 (2)0.008 (3)−0.002 (2)
C210.026 (3)0.020 (3)0.039 (3)0.002 (2)0.014 (2)0.003 (2)
C130.030 (3)0.031 (3)0.053 (4)0.006 (3)0.002 (3)0.011 (3)
C160.033 (3)0.018 (2)0.026 (3)−0.001 (2)0.007 (2)−0.001 (2)
C410.038 (3)0.021 (3)0.028 (3)0.002 (2)0.015 (2)0.004 (2)
C360.046 (4)0.028 (3)0.048 (4)−0.002 (3)−0.004 (3)−0.007 (3)
C150.028 (3)0.032 (3)0.033 (3)−0.010 (2)0.001 (2)0.004 (2)
C140.025 (3)0.043 (3)0.049 (4)−0.002 (3)−0.003 (3)0.014 (3)
N10.041 (3)0.030 (3)0.039 (3)−0.012 (2)0.020 (2)−0.017 (2)
C450.058 (4)0.039 (3)0.039 (3)0.025 (3)0.017 (3)0.017 (3)
C240.045 (4)0.036 (3)0.050 (4)0.006 (3)0.008 (3)0.016 (3)
C120.032 (3)0.023 (3)0.033 (3)−0.005 (2)0.009 (2)0.000 (2)
C250.056 (4)0.024 (3)0.059 (4)0.013 (3)0.018 (3)0.014 (3)
C230.038 (3)0.047 (4)0.039 (3)0.007 (3)0.009 (3)0.008 (3)
C420.042 (3)0.022 (3)0.036 (3)0.002 (2)0.020 (3)0.002 (2)
C430.064 (4)0.026 (3)0.038 (3)0.002 (3)0.029 (3)0.006 (3)
C330.098 (6)0.018 (3)0.033 (3)0.006 (3)0.016 (4)−0.004 (2)
Br20.0311 (11)0.0207 (10)0.0296 (9)0.0008 (9)0.0076 (8)0.0047 (7)
C3A0.049 (6)0.009 (4)0.028 (5)−0.007 (4)0.021 (4)0.000 (4)
O3A0.047 (12)0.032 (10)0.044 (10)0.011 (7)0.006 (7)0.007 (6)
Br10.0226 (10)0.0286 (12)0.0253 (9)0.0057 (7)0.0049 (7)0.0087 (7)
C3B0.049 (6)0.009 (4)0.028 (5)−0.007 (4)0.021 (4)0.000 (4)
O3B0.064 (13)0.042 (8)0.063 (10)0.006 (8)0.024 (8)0.006 (6)
C4B0.029 (10)0.025 (9)0.023 (8)0.003 (8)−0.001 (7)−0.001 (7)
C5B0.038 (5)0.029 (4)0.034 (4)−0.006 (4)−0.004 (4)−0.004 (3)
C6B0.047 (18)0.014 (15)0.040 (12)−0.004 (11)−0.014 (11)0.009 (11)
C4A0.027 (5)0.022 (4)0.026 (4)0.000 (4)0.008 (4)−0.001 (4)
C5A0.038 (5)0.029 (4)0.034 (4)−0.006 (4)−0.004 (4)−0.004 (3)
C6A0.050 (9)0.024 (10)0.059 (9)0.006 (8)−0.020 (6)0.004 (8)

Geometric parameters (Å, °)

Re1—C3B1.866 (15)C13—H130.95
Re1—C21.952 (5)C16—C151.379 (7)
Re1—C11.962 (6)C16—H160.95
Re1—C3A1.968 (18)C41—C421.385 (8)
Re1—P22.4375 (14)C36—H360.95
Re1—P12.4583 (15)C15—C141.394 (8)
Re1—Br22.617 (3)C15—H150.95
Re1—Br12.619 (2)C14—H140.95
P2—N11.702 (5)N1—C4A1.478 (9)
P2—C311.820 (5)N1—C4B1.619 (18)
P2—C411.828 (5)C45—H450.95
P2—P12.6897 (18)C24—C251.376 (9)
P1—N11.713 (4)C24—C231.386 (8)
P1—C211.804 (5)C24—H240.95
P1—C111.824 (5)C12—H120.95
C2—O21.146 (6)C25—H250.95
C34—C331.361 (10)C23—H230.95
C34—C351.366 (10)C42—C431.388 (8)
C34—H340.95C42—H420.95
C35—C361.387 (9)C43—H430.95
C35—H350.95C33—H330.95
O1—C11.142 (6)C3A—O3A1.12 (2)
C32—C311.392 (7)C3B—O3B1.20 (2)
C32—C331.406 (8)C4B—C5B1.52 (2)
C32—H320.95C4B—H4B10.99
C44—C451.370 (9)C4B—H4B20.99
C44—C431.400 (9)C5B—C6B1.50 (4)
C44—H440.95C5B—H5B10.99
C46—C451.388 (8)C5B—H5B20.99
C46—C411.393 (8)C6B—H6B10.98
C46—H460.95C6B—H6B20.98
C31—C361.386 (8)C6B—H6B30.98
C11—C161.392 (7)C4A—C5A1.500 (13)
C11—C121.402 (7)C4A—H4A10.99
C26—C251.382 (8)C4A—H4A20.99
C26—C211.408 (7)C5A—C6A1.52 (3)
C26—H260.95C5A—H5A10.99
C22—C231.394 (8)C5A—H5A20.99
C22—C211.395 (7)C6A—H6A10.98
C22—H220.95C6A—H6A20.98
C13—C121.375 (7)C6A—H6A30.98
C13—C141.383 (8)
C3B—Re1—C288.2 (3)C15—C16—H16119.6
C3B—Re1—C190.8 (3)C11—C16—H16119.6
C2—Re1—C193.7 (2)C42—C41—C46120.2 (5)
C3B—Re1—C3A177.1 (5)C42—C41—P2119.6 (4)
C2—Re1—C3A93.9 (5)C46—C41—P2120.2 (4)
C1—Re1—C3A87.1 (4)C31—C36—C35120.4 (7)
C3B—Re1—P287.2 (3)C31—C36—H36119.8
C2—Re1—P295.62 (16)C35—C36—H36119.8
C1—Re1—P2170.40 (16)C16—C15—C14119.9 (5)
C3A—Re1—P294.6 (4)C16—C15—H15120.1
C3B—Re1—P190.3 (3)C14—C15—H15120.1
C2—Re1—P1162.26 (16)C13—C14—C15119.7 (5)
C1—Re1—P1104.00 (16)C13—C14—H14120.2
C3A—Re1—P188.3 (4)C15—C14—H14120.2
P2—Re1—P166.65 (4)C4A—N1—P2130.1 (4)
C3B—Re1—Br25.0 (3)C4B—N1—P2121.1 (6)
C2—Re1—Br284.41 (16)C4A—N1—P1122.9 (4)
C1—Re1—Br287.79 (16)C4B—N1—P1128.7 (6)
C3A—Re1—Br2174.5 (4)P2—N1—P1103.9 (2)
P2—Re1—Br290.82 (7)C44—C45—C46120.5 (6)
P1—Re1—Br294.96 (7)C44—C45—H45119.7
C3B—Re1—Br1175.4 (3)C46—C45—H45119.7
C2—Re1—Br193.86 (16)C25—C24—C23120.3 (6)
C1—Re1—Br185.02 (16)C25—C24—H24119.9
C3A—Re1—Br12.1 (4)C23—C24—H24119.9
P2—Re1—Br196.64 (7)C13—C12—C11120.2 (5)
P1—Re1—Br188.92 (7)C13—C12—H12119.9
Br2—Re1—Br1172.48 (9)C11—C12—H12119.9
N1—P2—C31111.2 (3)C24—C25—C26120.3 (5)
N1—P2—C41106.0 (2)C24—C25—H25119.8
C31—P2—C41102.2 (2)C26—C25—H25119.8
N1—P2—Re195.10 (15)C24—C23—C22119.6 (6)
C31—P2—Re1113.44 (16)C24—C23—H23120.2
C41—P2—Re1128.11 (19)C22—C23—H23120.2
C31—P2—P1126.09 (18)C41—C42—C43120.4 (6)
C41—P2—P1125.45 (16)C41—C42—H42119.8
Re1—P2—P157.05 (4)C43—C42—H42119.8
N1—P1—C21108.3 (2)C42—C43—C44118.9 (6)
N1—P1—C11104.6 (2)C42—C43—H43120.5
C21—P1—C11101.6 (2)C44—C43—H43120.5
N1—P1—Re194.08 (16)C34—C33—C32120.4 (7)
C21—P1—Re1117.41 (18)C34—C33—H33119.8
C11—P1—Re1128.48 (17)C32—C33—H33119.8
C21—P1—P2120.47 (17)O3A—C3A—Re1176 (2)
C11—P1—P2128.68 (17)O3B—C3B—Re1174.9 (14)
Re1—P1—P256.30 (4)C5B—C4B—N1106.8 (12)
O2—C2—Re1175.1 (5)C5B—C4B—H4B1110.4
C33—C34—C35120.5 (6)N1—C4B—H4B1110.4
C33—C34—H34119.7C5B—C4B—H4B2110.4
C35—C34—H34119.7N1—C4B—H4B2110.4
C34—C35—C36120.2 (7)H4B1—C4B—H4B2108.6
C34—C35—H35119.9C6B—C5B—C4B108.5 (16)
C36—C35—H35119.9C6B—C5B—H5B1110
O1—C1—Re1178.4 (5)C4B—C5B—H5B1110
C31—C32—C33119.3 (6)C6B—C5B—H5B2110
C31—C32—H32120.3C4B—C5B—H5B2110
C33—C32—H32120.3H5B1—C5B—H5B2108.4
C45—C44—C43120.6 (6)C5B—C6B—H6B1109.5
C45—C44—H44119.7C5B—C6B—H6B2109.5
C43—C44—H44119.7H6B1—C6B—H6B2109.5
C45—C46—C41119.3 (6)C5B—C6B—H6B3109.5
C45—C46—H46120.3H6B1—C6B—H6B3109.5
C41—C46—H46120.3H6B2—C6B—H6B3109.5
C36—C31—C32119.1 (5)N1—C4A—C5A110.2 (7)
C36—C31—P2124.1 (4)N1—C4A—H4A1109.6
C32—C31—P2116.3 (4)C5A—C4A—H4A1109.6
C16—C11—C12118.9 (5)N1—C4A—H4A2109.6
C16—C11—P1120.6 (4)C5A—C4A—H4A2109.6
C12—C11—P1120.4 (4)H4A1—C4A—H4A2108.1
C25—C26—C21120.7 (5)C4A—C5A—C6A111.5 (9)
C25—C26—H26119.7C4A—C5A—H5A1109.3
C21—C26—H26119.7C6A—C5A—H5A1109.3
C23—C22—C21120.9 (5)C4A—C5A—H5A2109.3
C23—C22—H22119.5C6A—C5A—H5A2109.3
C21—C22—H22119.5H5A1—C5A—H5A2108
C22—C21—C26118.1 (5)C5A—C6A—H6A1109.5
C22—C21—P1118.4 (4)C5A—C6A—H6A2109.5
C26—C21—P1123.5 (4)H6A1—C6A—H6A2109.5
C12—C13—C14120.6 (6)C5A—C6A—H6A3109.5
C12—C13—H13119.7H6A1—C6A—H6A3109.5
C14—C13—H13119.7H6A2—C6A—H6A3109.5
C15—C16—C11120.7 (5)
C3B—Re1—P2—N188.4 (4)N1—P1—C11—C1298.5 (4)
C2—Re1—P2—N1176.3 (2)C21—P1—C11—C12−148.8 (4)
C3A—Re1—P2—N1−89.3 (5)Re1—P1—C11—C12−8.9 (5)
P1—Re1—P2—N1−3.19 (18)P2—P1—C11—C1265.3 (5)
Br2—Re1—P2—N191.86 (19)C23—C22—C21—C260.4 (8)
Br1—Re1—P2—N1−89.13 (19)C23—C22—C21—P1177.4 (5)
C3B—Re1—P2—C31−27.4 (4)C25—C26—C21—C22−2.4 (9)
C2—Re1—P2—C3160.6 (2)C25—C26—C21—P1−179.3 (5)
C3A—Re1—P2—C31154.9 (5)N1—P1—C21—C22165.6 (4)
P1—Re1—P2—C31−119.0 (2)C11—P1—C21—C2255.7 (5)
Br2—Re1—P2—C31−23.9 (2)Re1—P1—C21—C22−89.6 (4)
Br1—Re1—P2—C31155.1 (2)P2—P1—C21—C22−154.8 (4)
C3B—Re1—P2—C41−156.7 (4)N1—P1—C21—C26−17.6 (6)
C2—Re1—P2—C41−68.8 (3)C11—P1—C21—C26−127.4 (5)
C3A—Re1—P2—C4125.6 (5)Re1—P1—C21—C2687.2 (5)
P1—Re1—P2—C41111.7 (2)P2—P1—C21—C2622.1 (6)
Br2—Re1—P2—C41−153.2 (2)C12—C11—C16—C15−0.3 (7)
Br1—Re1—P2—C4125.8 (2)P1—C11—C16—C15176.0 (4)
Br1—Re1—P2—C4125.8 (2)C45—C46—C41—C42−0.4 (8)
C3B—Re1—P2—P191.5 (3)C45—C46—C41—P2−179.8 (4)
C2—Re1—P2—P1179.50 (15)N1—P2—C41—C42−77.5 (4)
C3A—Re1—P2—P1−86.2 (4)C31—P2—C41—C4239.0 (5)
Br2—Re1—P2—P195.04 (7)Re1—P2—C41—C42172.5 (3)
Br1—Re1—P2—P1−85.94 (7)P1—P2—C41—C42−114.4 (4)
Br1—Re1—P2—P1−85.94 (7)N1—P2—C41—C46101.9 (5)
C3B—Re1—P1—N1−83.7 (4)C31—P2—C41—C46−141.6 (4)
C2—Re1—P1—N11.5 (5)Re1—P2—C41—C46−8.1 (5)
C1—Re1—P1—N1−174.5 (2)P1—P2—C41—C4665.0 (5)
C3A—Re1—P1—N198.9 (4)C32—C31—C36—C350.2 (8)
P2—Re1—P1—N13.16 (18)P2—C31—C36—C35−171.9 (4)
Br2—Re1—P1—N1−85.59 (19)C34—C35—C36—C31−0.2 (9)
Br1—Re1—P1—N1100.87 (19)C11—C16—C15—C140.4 (8)
Br1—Re1—P1—N1100.87 (19)C12—C13—C14—C15−0.2 (9)
C3B—Re1—P1—C21163.2 (4)C16—C15—C14—C13−0.1 (9)
C2—Re1—P1—C21−111.5 (5)C31—P2—N1—C4A−78.0 (6)
C1—Re1—P1—C2172.4 (2)C41—P2—N1—C4A32.3 (7)
C3A—Re1—P1—C21−14.2 (4)Re1—P2—N1—C4A164.4 (6)
P2—Re1—P1—C21−109.92 (19)P1—P2—N1—C4A160.1 (8)
Br2—Re1—P1—C21161.3 (2)C31—P2—N1—C4B−32.4 (8)
Br1—Re1—P1—C21−12.22 (19)C41—P2—N1—C4B77.9 (8)
Br1—Re1—P1—C21−12.22 (19)Re1—P2—N1—C4B−150.0 (7)
C3B—Re1—P1—C1128.6 (4)P1—P2—N1—C4B−154.3 (9)
C2—Re1—P1—C11113.8 (5)C31—P2—N1—P1121.9 (3)
C1—Re1—P1—C11−62.3 (3)C41—P2—N1—P1−127.7 (3)
C3A—Re1—P1—C11−148.8 (5)Re1—P2—N1—P14.3 (2)
P2—Re1—P1—C11115.4 (2)C21—P1—N1—C4A−45.5 (6)
Br2—Re1—P1—C1126.7 (2)C11—P1—N1—C4A62.3 (6)
Br1—Re1—P1—C11−146.9 (2)Re1—P1—N1—C4A−166.2 (5)
Br1—Re1—P1—C11−146.9 (2)P2—P1—N1—C4A−161.9 (7)
C3B—Re1—P1—P2−86.8 (3)C21—P1—N1—C4B−92.0 (9)
C2—Re1—P1—P2−1.6 (5)C11—P1—N1—C4B15.8 (9)
C1—Re1—P1—P2−177.70 (16)Re1—P1—N1—C4B147.4 (8)
C3A—Re1—P1—P295.7 (4)P2—P1—N1—C4B151.6 (9)
Br2—Re1—P1—P2−88.75 (7)C21—P1—N1—P2116.4 (3)
Br1—Re1—P1—P297.70 (7)C11—P1—N1—P2−135.8 (3)
Br1—Re1—P1—P297.70 (7)Re1—P1—N1—P2−4.3 (2)
C31—P2—P1—N1−78.3 (4)C43—C44—C45—C461.3 (9)
C41—P2—P1—N169.0 (4)C41—C46—C45—C44−0.4 (9)
Re1—P2—P1—N1−174.9 (3)C14—C13—C12—C110.3 (9)
N1—P2—P1—C21−80.7 (4)C16—C11—C12—C130.0 (8)
C31—P2—P1—C21−159.0 (3)P1—C11—C12—C13−176.4 (4)
C41—P2—P1—C21−11.7 (3)C23—C24—C25—C261.1 (10)
Re1—P2—P1—C21104.5 (2)C21—C26—C25—C241.7 (10)
N1—P2—P1—C1159.8 (4)C25—C24—C23—C22−3.1 (10)
C31—P2—P1—C11−18.6 (3)C21—C22—C23—C242.3 (9)
C41—P2—P1—C11128.7 (3)C46—C41—C42—C430.4 (8)
Re1—P2—P1—C11−115.1 (2)P2—C41—C42—C43179.8 (4)
N1—P2—P1—Re1174.9 (3)C41—C42—C43—C440.4 (8)
C31—P2—P1—Re196.5 (2)C45—C44—C43—C42−1.3 (8)
C41—P2—P1—Re1−116.2 (2)C35—C34—C33—C320.3 (9)
C33—C34—C35—C36−0.1 (9)C31—C32—C33—C34−0.2 (8)
C33—C32—C31—C360.0 (8)C2—Re1—Br1—Br10.00 (6)
C33—C32—C31—P2172.7 (4)C1—Re1—Br1—Br10.00 (6)
N1—P2—C31—C36−19.3 (5)C3A—Re1—Br1—Br10.0 (14)
C41—P2—C31—C36−132.0 (5)P2—Re1—Br1—Br10.00 (6)
Re1—P2—C31—C3686.5 (5)P1—Re1—Br1—Br10.00 (6)
P1—P2—C31—C3621.2 (6)C4A—N1—C4B—C5B−7.6 (9)
N1—P2—C31—C32168.4 (4)P2—N1—C4B—C5B−124.3 (10)
C41—P2—C31—C3255.7 (4)P1—N1—C4B—C5B88.3 (12)
Re1—P2—C31—C32−85.8 (4)N1—C4B—C5B—C6B−176.0 (19)
P1—P2—C31—C32−151.1 (3)C4B—N1—C4A—C5A9.0 (10)
N1—P1—C11—C16−77.7 (4)P2—N1—C4A—C5A99.9 (7)
C21—P1—C11—C1634.9 (5)P1—N1—C4A—C5A−103.3 (7)
Re1—P1—C11—C16174.8 (3)N1—C4A—C5A—C6A170.2 (13)
P2—P1—C11—C16−111.0 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C12—H12···O3B0.952.513.39 (2)155
C14—H14···Br1i0.952.813.524 (6)133
C46—H46···Br10.952.633.519 (6)157

Symmetry codes: (i) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FI2092).

References

  • Alberto, R., Schibli, R. & Schubiger, P. A. (1996). Polyhedron, 15, 1079–1089.
  • Brandenberg, K. & Putz, H. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  • Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  • Graziani, R. & Casellato, U. (1996). Acta Cryst. C52, 850–852.
  • Kemp, G. (2006). PhD thesis, University of Johannesburg, South Africa.
  • Mundwiler, S., Kundig, M., Ortner, K. & Alberto, R. (2004). Dalton Trans. pp. 1320–1328. [PubMed]
  • Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.
  • Rossi, R., Marchi, A., Marvelli, L., Magon, L., Peruzzini, M., Casellato, U. & Graziani, R. (1993). J. Chem. Soc. Dalton Trans. pp. 723–729.
  • Schutte, M. & Visser, H. G. (2008). Acta Cryst. E64, m1226–m1227. [PMC free article] [PubMed]
  • Schutte, M., Visser, H. G. & Roodt, A. (2008). Acta Cryst. E64, m1610–m1611. [PMC free article] [PubMed]
  • Schutte, M., Visser, H. G. & Steyl, G. (2007). Acta Cryst. E63, m3195–m3196.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Steil, P., Nagel, U. & Beck, W. (1989). J. Organomet. Chem. 366, 313–331.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography