PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): m1555.
Published online 2009 November 11. doi:  10.1107/S1600536809045255
PMCID: PMC2971854

Poly[triaqua­(μ-butane-1,2,3,4-tetra­carboxyl­ato)dicadmium(II)]

Abstract

The asymmetric unit of the title CdII coordination polymer, [Cd2(C8H6O8)(H2O)3]n, contains two crystallographically independent CdII cations, one-half each of two independent anionic butane-1,2,3,4-tetra­carboxyl­ate units (L) and three water mol­ecules. Both anionic units lie on inversion centers. One of the CdII ions is six-coordinated by four carboxyl­ate O atoms from four L anions and two water O atoms in a distorted octa­hedral coordination environment. The other CdII ion is eight-coordinated by seven carboxyl­ate O atoms from four L anions and one water O atom. The anionic units bridge neighboring CdII centers, forming a three-dimensional framework. O—H(...)O hydrogen-bonding inter­actions between the water mol­ecules and carboxyl­ate O atoms further stabilize the structure.

Related literature

For coordination polymers with tetra­carboxyl­ate ligands, see: Liu et al. (2008 [triangle]); Yang et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1555-scheme1.jpg

Experimental

Crystal data

  • [Cd2(C8H6O8)(H2O)3]
  • M r = 508.98
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1555-efi1.jpg
  • a = 7.499 (4) Å
  • b = 7.928 (4) Å
  • c = 11.982 (5) Å
  • α = 72.886 (4)°
  • β = 85.748 (4)°
  • γ = 65.666 (5)°
  • V = 619.4 (6) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 3.49 mm−1
  • T = 293 K
  • 0.27 × 0.22 × 0.20 mm

Data collection

  • Bruker APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.812, T max = 0.910
  • 4846 measured reflections
  • 2847 independent reflections
  • 2225 reflections with I > 2σ(I)
  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.026
  • wR(F 2) = 0.053
  • S = 0.92
  • 2847 reflections
  • 208 parameters
  • 4 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.75 e Å−3
  • Δρmin = −0.85 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1999 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL-Plus (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809045255/ci2945sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809045255/ci2945Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Jiangsu University and Jilin Normal University for support.

supplementary crystallographic information

Comment

Over years of intensive studies on tetracarboxylate ligands, transition metals and poly-carboxylates, a vast amount of data have been acquired. As an important family of multidentate O-donor ligands, organic tetracarboxylate ligands, such as 1,2,4,5-benzenetetracarboxylate, have been extensively employed in the preparation of such metal-organic compound (Yang et al., 2008). In this regard, butane-1,2,3,4-tetracarboxylatic acid (H4L) is also a good ligand in coordination chemistry due to its strong coordination ability and versatile coordination modes, so much attention has been paid to it in recent years (Liu et al., 2008). In this contribution, H4L was selected as a bridging ligand, and a new cadmium coordination polymer, namely [Cd2(L)(H2O)3], was obtained.

As shown in Fig. 1, the asymmetric unit of the title CdII coordination polymer, contains two crystallographically independent CdII cations, one-half each of two independent L anions and three water molecules. The L anions lie on inversion centers. One of the CdII ion, Cd1, is six-coordinated by four carboxylate oxygen atoms from L anions and two water oxygen atoms in a distorted octahedral coordination environment. Atom Cd2 is eight-coordinated by seven carboxylate oxygen atoms from L anions and one water oxygen atom. The L anions bridge neighboring CdII centers to form a complicated three-dimensional framework structure (Fig. 2). The hydrogen-bonding interactions between water molecules and carboxylate oxygen atoms further stabilize the three-dimensional framework structure of the title compound.

Experimental

A mixture of CdCl2.2H2O (0.10 mmol), H4L (0.05 mmol) and water (12 ml) was sealed in a Teflon reactor (15 ml), which was heated at 413 K for 3 d and then gradually cooled to room temperature. Purple crystals of the title compound were isolated (yield 68% based on Cd).

Refinement

H atoms bonded to C atoms were positioned geometrically (C-H = 0.97 or 0.98 Å) and refined as riding, with Uiso(H) = 1.2Ueq(carrier). The water H atoms were located in a difference Fourier map, and were refined with distance restraints of O-H = 0.85 (1) Å and H···H = 1.35 (1) Å; their Uiso values were tied to those of parent atoms by a factor of 1.5.

Figures

Fig. 1.
A view of the local coordination of CdII cations in the title compound, showing the atom-numbering scheme. Displacement ellipsoids drawn at the 30% probability level. Symmetry codes: (i) -2-x, -y, 2-z; (ii) -2-x, 1-y, 1-z; (iii) x+1, y, z; (iv) -1-x, ...
Fig. 2.
View of the three-dimensional framework structure of the title compound.

Crystal data

[Cd2(C8H6O8)(H2O)3]Z = 2
Mr = 508.98F(000) = 488
Triclinic, P1Dx = 2.729 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.499 (4) ÅCell parameters from 2847 reflections
b = 7.928 (4) Åθ = 3.0–29.1°
c = 11.982 (5) ŵ = 3.49 mm1
α = 72.886 (4)°T = 293 K
β = 85.748 (4)°Block, colourless
γ = 65.666 (5)°0.27 × 0.22 × 0.20 mm
V = 619.4 (6) Å3

Data collection

Bruker APEX CCD area-detector diffractometer2847 independent reflections
Radiation source: fine-focus sealed tube2225 reflections with I > 2σ(I)
graphiteRint = 0.024
ω scansθmax = 29.1°, θmin = 3.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −10→9
Tmin = 0.812, Tmax = 0.910k = −9→9
4846 measured reflectionsl = −16→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.053H atoms treated by a mixture of independent and constrained refinement
S = 0.92w = 1/[σ2(Fo2) + (0.024P)2] where P = (Fo2 + 2Fc2)/3
2847 reflections(Δ/σ)max = 0.001
208 parametersΔρmax = 0.75 e Å3
4 restraintsΔρmin = −0.85 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C1−1.1870 (5)−0.0435 (5)0.8775 (3)0.0222 (8)
C2−1.0228 (5)−0.2392 (5)0.9250 (4)0.0242 (9)
H2A−0.9498−0.23480.98680.029*
H2B−0.9344−0.26750.86320.029*
C3−1.0890 (5)−0.4024 (5)0.9729 (3)0.0195 (8)
H3−1.1514−0.41540.90870.023*
C4−1.2362 (5)−0.3626 (5)1.0672 (3)0.0180 (8)
C5−0.5128 (5)0.1885 (5)0.5710 (3)0.0157 (7)
C6−0.5234 (5)0.1089 (5)0.4728 (3)0.0138 (7)
H6−0.42370.12220.41750.017*
C7−0.7242 (5)0.2187 (5)0.4086 (3)0.0198 (8)
H7A−0.73130.15580.35180.024*
H7B−0.82340.21190.46430.024*
C8−0.7700 (5)0.4286 (5)0.3463 (3)0.0186 (8)
O1−1.1495 (4)0.1055 (4)0.8533 (2)0.0254 (6)
O2−1.3566 (4)−0.0238 (4)0.8590 (3)0.0316 (7)
O1W−0.7754 (4)0.6162 (4)0.6382 (3)0.0295 (7)
HW11−0.847 (7)0.565 (7)0.635 (4)0.044*
HW12−0.721 (7)0.639 (7)0.574 (4)0.044*
O3−0.6391 (4)0.2043 (4)0.6460 (2)0.0230 (6)
O2W−0.9660 (4)0.0105 (5)0.6309 (3)0.0293 (7)
HW22−0.916 (7)−0.104 (7)0.631 (4)0.044*
HW21−1.084 (3)0.058 (6)0.611 (4)0.044*
O4−0.3718 (4)0.2352 (4)0.5789 (2)0.0249 (6)
O3W−0.6465 (4)−0.1422 (4)0.8435 (3)0.0421 (9)
HW31−0.545 (5)−0.136 (6)0.864 (4)0.063*
HW32−0.628 (7)−0.259 (4)0.875 (4)0.063*
O5−1.2174 (4)−0.2778 (4)1.1353 (2)0.0322 (7)
O6−1.3702 (4)−0.4211 (4)1.0774 (2)0.0293 (7)
O7−0.6349 (4)0.4662 (4)0.2971 (3)0.0450 (9)
O8−0.9426 (4)0.5479 (4)0.3476 (3)0.0386 (8)
Cd1−0.89424 (4)0.14635 (4)0.75659 (2)0.01890 (8)
Cd2−0.48747 (4)0.31540 (4)0.76500 (2)0.01614 (8)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.019 (2)0.0184 (19)0.021 (2)−0.0033 (16)0.0030 (16)−0.0005 (16)
C20.0179 (19)0.0178 (19)0.032 (2)−0.0057 (16)0.0038 (17)−0.0031 (17)
C30.0173 (19)0.0170 (19)0.020 (2)−0.0034 (16)0.0041 (16)−0.0056 (16)
C40.0171 (18)0.0115 (17)0.0177 (19)−0.0006 (15)0.0044 (15)−0.0020 (15)
C50.0149 (18)0.0066 (15)0.0194 (19)−0.0002 (14)−0.0035 (15)−0.0002 (14)
C60.0117 (17)0.0137 (17)0.0149 (18)−0.0045 (14)0.0010 (14)−0.0037 (14)
C70.0176 (19)0.0157 (18)0.022 (2)−0.0057 (15)−0.0049 (16)−0.0001 (15)
C80.020 (2)0.0136 (18)0.020 (2)−0.0054 (16)−0.0048 (16)−0.0029 (15)
O10.0239 (14)0.0194 (14)0.0319 (16)−0.0115 (12)0.0077 (13)−0.0038 (12)
O20.0195 (15)0.0229 (15)0.0472 (19)−0.0093 (12)−0.0054 (13)−0.0002 (14)
O1W0.0262 (16)0.0263 (16)0.0362 (18)−0.0125 (13)0.0027 (14)−0.0068 (14)
O30.0205 (14)0.0247 (14)0.0276 (15)−0.0101 (12)0.0100 (12)−0.0139 (12)
O2W0.0237 (15)0.0300 (16)0.0406 (18)−0.0120 (14)0.0021 (14)−0.0177 (15)
O40.0241 (14)0.0297 (15)0.0276 (15)−0.0160 (13)0.0017 (12)−0.0104 (12)
O3W0.0237 (17)0.0224 (16)0.073 (3)−0.0105 (14)−0.0142 (16)0.0028 (16)
O50.0320 (16)0.0449 (18)0.0316 (17)−0.0197 (14)0.0097 (13)−0.0241 (15)
O60.0237 (15)0.0331 (16)0.0367 (17)−0.0155 (13)0.0118 (13)−0.0150 (14)
O70.0289 (17)0.0218 (16)0.075 (3)−0.0138 (14)0.0029 (17)0.0039 (16)
O80.0228 (16)0.0213 (15)0.052 (2)0.0002 (13)0.0038 (15)0.0030 (14)
Cd10.01652 (15)0.01605 (14)0.02473 (16)−0.00788 (11)0.00187 (12)−0.00519 (12)
Cd20.01470 (14)0.01407 (14)0.01976 (15)−0.00613 (11)0.00438 (11)−0.00553 (11)

Geometric parameters (Å, °)

C1—O21.245 (4)O1W—Cd22.601 (3)
C1—O11.272 (4)O1W—HW110.81 (5)
C1—C21.502 (5)O1W—HW120.85 (5)
C2—C31.517 (5)O3—Cd12.370 (3)
C2—H2A0.97O3—Cd22.430 (3)
C2—H2B0.97O2W—Cd12.295 (3)
C3—C41.528 (5)O2W—HW220.83 (5)
C3—C3i1.560 (7)O2W—HW210.831 (19)
C3—H30.98O4—Cd22.495 (3)
C4—O51.247 (4)O3W—Cd12.270 (3)
C4—O61.254 (4)O3W—HW310.842 (19)
C5—O31.251 (4)O3W—HW320.849 (19)
C5—O41.274 (4)O5—Cd1iv2.267 (3)
C5—C61.511 (5)O5—Cd2iv2.521 (3)
C6—C71.522 (5)O6—Cd2iv2.303 (3)
C6—C6ii1.549 (7)O7—Cd2v2.201 (3)
C6—H60.98O8—Cd1vi2.221 (3)
C7—C81.510 (5)Cd1—O8vi2.221 (3)
C7—H7A0.97Cd1—O5iv2.267 (3)
C7—H7B0.97Cd2—O7v2.201 (3)
C8—O71.232 (5)Cd2—O6iv2.303 (3)
C8—O81.252 (4)Cd2—O2vii2.381 (3)
O1—Cd12.252 (3)Cd2—O1vii2.490 (3)
O1—Cd2iii2.490 (3)Cd2—O5iv2.521 (3)
O2—Cd2iii2.381 (3)
O2—C1—O1119.4 (3)Cd1—O3W—HW32139 (3)
O2—C1—C2121.9 (3)HW31—O3W—HW32104 (3)
O1—C1—C2118.7 (3)C4—O5—Cd1iv165.6 (2)
C1—C2—C3114.3 (3)C4—O5—Cd2iv87.7 (2)
C1—C2—H2A108.7Cd1iv—O5—Cd2iv105.79 (11)
C3—C2—H2A108.7C4—O6—Cd2iv97.8 (2)
C1—C2—H2B108.7C8—O7—Cd2v146.3 (3)
C3—C2—H2B108.7C8—O8—Cd1vi132.2 (3)
H2A—C2—H2B107.6O8vi—Cd1—O197.13 (10)
C2—C3—C4111.4 (3)O8vi—Cd1—O5iv83.82 (13)
C2—C3—C3i110.8 (4)O1—Cd1—O5iv104.20 (10)
C4—C3—C3i108.2 (4)O8vi—Cd1—O3W161.95 (11)
C2—C3—H3108.8O1—Cd1—O3W100.36 (11)
C4—C3—H3108.8O5iv—Cd1—O3W87.57 (13)
C3i—C3—H3108.8O8vi—Cd1—O2W96.30 (13)
O5—C4—O6121.1 (3)O1—Cd1—O2W84.45 (11)
O5—C4—C3119.4 (3)O5iv—Cd1—O2W171.28 (10)
O6—C4—C3119.5 (3)O3W—Cd1—O2W89.84 (13)
O3—C5—O4119.9 (3)O8vi—Cd1—O379.76 (10)
O3—C5—C6120.3 (3)O1—Cd1—O3176.60 (9)
O4—C5—C6119.8 (3)O5iv—Cd1—O376.92 (10)
C5—C6—C7110.8 (3)O3W—Cd1—O382.86 (11)
C5—C6—C6ii107.5 (3)O2W—Cd1—O394.50 (10)
C7—C6—C6ii111.7 (3)O7v—Cd2—O6iv94.65 (12)
C5—C6—H6108.9O7v—Cd2—O2vii135.30 (11)
C7—C6—H6108.9O6iv—Cd2—O2vii98.61 (10)
C6ii—C6—H6108.9O7v—Cd2—O3127.03 (11)
C8—C7—C6113.6 (3)O6iv—Cd2—O3123.75 (9)
C8—C7—H7A108.8O2vii—Cd2—O378.14 (10)
C6—C7—H7A108.8O7v—Cd2—O1vii82.94 (11)
C8—C7—H7B108.8O6iv—Cd2—O1vii98.91 (10)
C6—C7—H7B108.8O2vii—Cd2—O1vii52.95 (8)
H7A—C7—H7B107.7O3—Cd2—O1vii119.71 (9)
O7—C8—O8126.0 (3)O7v—Cd2—O484.40 (11)
O7—C8—C7117.0 (3)O6iv—Cd2—O4172.55 (9)
O8—C8—C7116.9 (3)O2vii—Cd2—O487.15 (10)
C1—O1—Cd1127.2 (2)O3—Cd2—O452.67 (8)
C1—O1—Cd2iii90.8 (2)O1vii—Cd2—O488.32 (9)
Cd1—O1—Cd2iii118.95 (12)O7v—Cd2—O5iv140.00 (11)
C1—O2—Cd2iii96.6 (2)O6iv—Cd2—O5iv53.43 (9)
Cd2—O1W—HW1199 (3)O2vii—Cd2—O5iv78.81 (10)
Cd2—O1W—HW12101 (3)O3—Cd2—O5iv71.26 (9)
HW11—O1W—HW12111 (5)O1vii—Cd2—O5iv121.41 (10)
C5—O3—Cd1157.2 (2)O4—Cd2—O5iv123.88 (8)
C5—O3—Cd295.5 (2)O7v—Cd2—O1W76.29 (11)
Cd1—O3—Cd2105.53 (10)O6iv—Cd2—O1W86.09 (11)
Cd1—O2W—HW22128 (3)O2vii—Cd2—O1W146.80 (9)
Cd1—O2W—HW21114 (3)O3—Cd2—O1W72.16 (10)
HW22—O2W—HW21109 (5)O1vii—Cd2—O1W158.98 (9)
C5—O4—Cd291.9 (2)O4—Cd2—O1W86.51 (10)
Cd1—O3W—HW31116 (3)O5iv—Cd2—O1W77.91 (11)

Symmetry codes: (i) −x−2, −y−1, −z+2; (ii) −x−1, −y, −z+1; (iii) x−1, y, z; (iv) −x−2, −y, −z+2; (v) −x−1, −y+1, −z+1; (vi) −x−2, −y+1, −z+1; (vii) x+1, y, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—HW11···O8vi0.81 (5)2.08 (5)2.877 (4)169 (5)
O1W—HW12···O4v0.85 (5)2.04 (5)2.866 (4)166 (5)
O2W—HW22···O1Wviii0.83 (5)2.00 (5)2.828 (5)175 (5)
O2W—HW21···O4iii0.83 (2)2.02 (2)2.825 (4)163 (4)
O3W—HW31···O2vii0.84 (2)1.95 (2)2.736 (4)156 (4)
O3W—HW32···O6i0.85 (2)2.43 (2)3.260 (5)165 (4)

Symmetry codes: (vi) −x−2, −y+1, −z+1; (v) −x−1, −y+1, −z+1; (viii) x, y−1, z; (iii) x−1, y, z; (vii) x+1, y, z; (i) −x−2, −y−1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2945).

References

  • Bruker (1997). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Liu, Y.-Y., Ma, J.-F., Yang, J., Ma, J.-C. & Su, Z.-M. (2008). CrystEngComm, 10, 894–904.
  • Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Yang, J., Ma, J.-F., Batten, S. R. & Su, Z.-M. (2008). Chem. Commun. pp. 2233–2235. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography