PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): o3060.
Published online 2009 November 11. doi:  10.1107/S1600536809046844
PMCID: PMC2971853

3-Hydroxy­pyridinium hydrogen chloranilate monohydrate

Abstract

In the title salt hydrate, C5H6NO+·C6HCl2O4 ·H2O, the three components are held together by O—H(...)O and N—H(...)O hydrogen bonds, as well as by C—H(...)O contacts, forming a double-tape structure along the c axis. Within each tape, the pyridinium ring and the chloranilate ring are almost coplanar, forming a dihedral angle of 2.35 (7)°.

Related literature

For related structures, see, for example: Gotoh et al. (2009a [triangle],b [triangle]); Gotoh & Ishida (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o3060-scheme1.jpg

Experimental

Crystal data

  • C5H6NO+·C6HCl2O4 ·H2O
  • M r = 322.10
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o3060-efi1.jpg
  • a = 7.4893 (13) Å
  • b = 9.6650 (17) Å
  • c = 9.9305 (17) Å
  • α = 88.129 (5)°
  • β = 68.404 (6)°
  • γ = 67.980 (4)°
  • V = 614.95 (18) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.55 mm−1
  • T = 180 K
  • 0.20 × 0.15 × 0.05 mm

Data collection

  • Rigaku R-AXIS RAPID-II diffractometer
  • Absorption correction: numerical (ABSCOR; Higashi, 1999 [triangle]) T min = 0.907, T max = 0.973
  • 12237 measured reflections
  • 3572 independent reflections
  • 2952 reflections with I > 2σ(I)
  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030
  • wR(F 2) = 0.088
  • S = 1.07
  • 3572 reflections
  • 201 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.60 e Å−3
  • Δρmin = −0.29 e Å−3

Data collection: PROCESS-AUTO (Rigaku/MSC, 2004 [triangle]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004 [triangle]); program(s) used to solve structure: SIR92 (Altomare et al., 1994 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: CrystalStructure and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809046844/tk2567sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809046844/tk2567Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The title salt hydrate, C5H6NO+.C6HCl2O4-.H2O, (I), was prepared in order to extend our study on D—H···A hydrogen bonding (D = N, O, or C; A = N, O or Cl) in substituted-pyridine – chloranilic acid (systematic name: 2,5-dichloro-3,6-dihydroxy-1,4-benzoquinone) systems (Gotoh & Ishida, 2009; Gotoh et al., 2009a,b).

In (I), the three components are held together by O—H···O and N—H···O hydrogen bonds, as well as C—H···O contacts (Fig. 1 and Table 1) forming a double-tape structure along the c direction. The connections between individual tapes, Fig. 2, are accomplished via Owater–H···O hydrogen bonds, Fig. 3. Within each tape, the pyridinium N1/C7–C11 and the anion C1–C6 rings are almost coplanar, with a dihedral angle of 2.35 (7)° between them. A π–π interaction between the anion rings is also present within the double-tape structure; the centroid-centroid distance [Cg1···Cg1iii; symmetry code: (iii) -x + 2, -y + 1, -z + 1] is 3.6729 (11) Å and the inter-planar separation is 3.2656 (6) Å. The double-tapes are connected by C—H···O contacts, resulting in a layer parallel to the (100) plane, Table 1.

Experimental

Single crystals were obtained by slow evaporation from a methanol solution (150 ml) of chloranilic acid (350 mg) and 3-hydroxypyridine (160 mg) at room temperature.

Refinement

All H atoms were found in a difference Fourier map and O- and N-bound H atoms were refined isotropically. The refined O—H and N—H bond lengths are given in Table 1. C-bound H atoms were positioned geometrically (C—H = 0.95 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structures of the constituents in (I), with the atom-labeling. Displacement ellipsoids of non-H atoms are drawn at the 50% probability level. The dashed lines indicate O—H···O hydrogen bonds and C—H···O ...
Fig. 2.
A partial packing diagram for (I), showing a molecular tape running along the c axis. The dashed lines indicate O—H···O and N—H···O hydrogen bonds, and C—H···O ...
Fig. 3.
A partial packing diagram for (I), showing a double-tape structure running along the c axis. The dashed lines indicate O—H···O and N—H···O hydrogen bonds, and C—H···O ...

Crystal data

C5H6NO+·C6HCl2O4·H2OZ = 2
Mr = 322.10F(000) = 328.00
Triclinic, P1Dx = 1.739 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71075 Å
a = 7.4893 (13) ÅCell parameters from 10001 reflections
b = 9.6650 (17) Åθ = 3.0–30.1°
c = 9.9305 (17) ŵ = 0.55 mm1
α = 88.129 (5)°T = 180 K
β = 68.404 (6)°Block, brown
γ = 67.980 (4)°0.20 × 0.15 × 0.05 mm
V = 614.95 (18) Å3

Data collection

Rigaku R-AXIS RAPID-II diffractometer2952 reflections with I > 2σ(I)
Detector resolution: 10.00 pixels mm-1Rint = 0.025
ω scansθmax = 30.0°
Absorption correction: numerical (ABSCOR; Higashi, 1999)h = −10→10
Tmin = 0.907, Tmax = 0.973k = −13→13
12237 measured reflectionsl = −13→13
3572 independent reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.07w = 1/[σ2(Fo2) + (0.0481P)2 + 0.2238P] where P = (Fo2 + 2Fc2)/3
3572 reflections(Δ/σ)max < 0.001
201 parametersΔρmax = 0.60 e Å3
0 restraintsΔρmin = −0.29 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.74975 (5)0.30013 (3)0.52240 (3)0.01897 (9)
Cl20.76493 (5)0.94942 (3)0.44706 (4)0.02295 (10)
O10.77201 (16)0.47186 (11)0.26178 (10)0.0198 (2)
O20.72724 (17)0.51208 (11)0.74674 (10)0.0226 (2)
O30.73261 (17)0.78687 (12)0.71214 (11)0.0244 (2)
O40.76878 (18)0.74463 (12)0.23264 (11)0.0238 (2)
O50.7211 (2)0.21895 (12)0.23481 (11)0.0277 (2)
O60.8140 (2)0.62351 (14)−0.02703 (12)0.0284 (2)
N10.7338 (2)0.25226 (14)−0.13073 (13)0.0229 (2)
C10.76153 (19)0.53710 (14)0.37347 (13)0.0153 (2)
C20.7509 (2)0.47845 (13)0.50577 (13)0.0152 (2)
C30.7388 (2)0.55870 (14)0.62593 (13)0.0162 (2)
C40.7419 (2)0.71690 (14)0.60863 (14)0.0173 (2)
C50.7570 (2)0.77458 (14)0.46900 (14)0.0168 (2)
C60.7618 (2)0.69224 (14)0.35935 (14)0.0165 (2)
C70.7293 (2)0.29123 (15)−0.00035 (15)0.0199 (3)
H70.72720.38700.02150.024*
C80.7279 (2)0.18979 (15)0.10182 (14)0.0190 (3)
C90.7317 (2)0.05028 (15)0.06603 (15)0.0222 (3)
H90.7297−0.02030.13480.027*
C100.7383 (2)0.01496 (16)−0.06979 (16)0.0239 (3)
H100.7428−0.0805−0.09540.029*
C110.7382 (2)0.11952 (17)−0.16830 (15)0.0252 (3)
H110.74130.0970−0.26170.030*
H10.731 (3)0.328 (2)−0.188 (2)0.041 (6)*
H6A0.759 (4)0.633 (3)−0.084 (3)0.067 (8)*
H6B0.941 (5)0.594 (3)−0.081 (3)0.061 (8)*
H40.762 (4)0.690 (3)0.182 (3)0.063 (8)*
H50.739 (4)0.301 (3)0.235 (3)0.060 (7)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.02939 (17)0.01539 (14)0.01838 (15)−0.01195 (12)−0.01284 (12)0.00521 (11)
Cl20.03172 (18)0.01444 (15)0.02679 (18)−0.01173 (13)−0.01295 (14)0.00362 (11)
O10.0324 (5)0.0193 (4)0.0138 (4)−0.0142 (4)−0.0113 (4)0.0028 (3)
O20.0366 (6)0.0214 (5)0.0159 (4)−0.0141 (4)−0.0140 (4)0.0051 (4)
O30.0360 (6)0.0239 (5)0.0181 (5)−0.0149 (4)−0.0120 (4)−0.0016 (4)
O40.0443 (6)0.0186 (5)0.0171 (5)−0.0168 (4)−0.0166 (4)0.0069 (4)
O50.0531 (7)0.0237 (5)0.0208 (5)−0.0232 (5)−0.0218 (5)0.0071 (4)
O60.0357 (6)0.0369 (6)0.0159 (5)−0.0149 (5)−0.0124 (5)0.0023 (4)
N10.0314 (6)0.0236 (6)0.0174 (5)−0.0136 (5)−0.0106 (5)0.0073 (4)
C10.0189 (6)0.0146 (5)0.0145 (5)−0.0077 (4)−0.0076 (4)0.0027 (4)
C20.0212 (6)0.0130 (5)0.0145 (6)−0.0081 (4)−0.0088 (5)0.0029 (4)
C30.0192 (6)0.0162 (5)0.0152 (6)−0.0077 (5)−0.0079 (5)0.0023 (4)
C40.0204 (6)0.0180 (6)0.0157 (6)−0.0086 (5)−0.0080 (5)0.0011 (4)
C50.0218 (6)0.0128 (5)0.0185 (6)−0.0086 (5)−0.0088 (5)0.0030 (4)
C60.0221 (6)0.0152 (5)0.0150 (6)−0.0091 (5)−0.0086 (5)0.0043 (4)
C70.0272 (7)0.0171 (6)0.0191 (6)−0.0114 (5)−0.0101 (5)0.0034 (5)
C80.0261 (7)0.0181 (6)0.0170 (6)−0.0111 (5)−0.0103 (5)0.0026 (5)
C90.0340 (7)0.0181 (6)0.0202 (6)−0.0134 (5)−0.0134 (6)0.0049 (5)
C100.0335 (7)0.0206 (6)0.0219 (7)−0.0137 (6)−0.0118 (6)0.0002 (5)
C110.0344 (8)0.0295 (7)0.0162 (6)−0.0157 (6)−0.0113 (5)0.0023 (5)

Geometric parameters (Å, °)

Cl1—C21.7289 (13)C1—C21.4007 (17)
Cl2—C51.7172 (13)C1—C61.5020 (17)
O1—C11.2564 (15)C2—C31.4006 (17)
O2—C31.2519 (15)C3—C41.5412 (18)
O3—C41.2149 (16)C4—C51.4587 (18)
O4—C61.3313 (15)C5—C61.3514 (18)
O4—H40.76 (3)C7—C81.3877 (18)
O5—C81.3381 (16)C7—H70.9500
O5—H50.85 (3)C8—C91.3930 (18)
O6—H6A0.80 (3)C9—C101.3808 (19)
O6—H6B0.84 (3)C9—H90.9500
N1—C111.3330 (19)C10—C111.383 (2)
N1—C71.3452 (18)C10—H100.9500
N1—H10.91 (2)C11—H110.9500
C6—O4—H4111 (2)C4—C5—Cl2119.01 (9)
C8—O5—H5106.0 (18)O4—C6—C5121.39 (11)
H6A—O6—H6B103 (3)O4—C6—C1116.69 (11)
C11—N1—C7123.32 (12)C5—C6—C1121.91 (11)
C11—N1—H1125.1 (14)N1—C7—C8119.14 (12)
C7—N1—H1111.6 (14)N1—C7—H7120.4
O1—C1—C2126.22 (11)C8—C7—H7120.4
O1—C1—C6115.16 (11)O5—C8—C7123.49 (12)
C2—C1—C6118.62 (11)O5—C8—C9117.59 (12)
C3—C2—C1122.83 (11)C7—C8—C9118.92 (12)
C3—C2—Cl1118.48 (9)C10—C9—C8119.78 (13)
C1—C2—Cl1118.68 (9)C10—C9—H9120.1
O2—C3—C2125.37 (12)C8—C9—H9120.1
O2—C3—C4116.88 (11)C9—C10—C11119.55 (13)
C2—C3—C4117.75 (11)C9—C10—H10120.2
O3—C4—C5123.42 (12)C11—C10—H10120.2
O3—C4—C3118.12 (11)N1—C11—C10119.29 (13)
C5—C4—C3118.46 (10)N1—C11—H11120.4
C6—C5—C4120.38 (11)C10—C11—H11120.4
C6—C5—Cl2120.61 (10)
O1—C1—C2—C3−179.78 (13)C4—C5—C6—O4177.85 (12)
C6—C1—C2—C30.53 (19)Cl2—C5—C6—O4−1.29 (19)
O1—C1—C2—Cl1−0.50 (19)C4—C5—C6—C1−2.7 (2)
C6—C1—C2—Cl1179.80 (9)Cl2—C5—C6—C1178.13 (10)
C1—C2—C3—O2179.38 (13)O1—C1—C6—O41.29 (17)
Cl1—C2—C3—O20.10 (19)C2—C1—C6—O4−178.98 (12)
C1—C2—C3—C4−1.25 (19)O1—C1—C6—C5−178.16 (12)
Cl1—C2—C3—C4179.47 (9)C2—C1—C6—C51.57 (19)
O2—C3—C4—O3−0.19 (19)C11—N1—C7—C8−0.4 (2)
C2—C3—C4—O3−179.62 (12)N1—C7—C8—O5−179.23 (13)
O2—C3—C4—C5179.52 (12)N1—C7—C8—C90.2 (2)
C2—C3—C4—C50.09 (18)O5—C8—C9—C10179.88 (14)
O3—C4—C5—C6−178.41 (13)C7—C8—C9—C100.5 (2)
C3—C4—C5—C61.89 (19)C8—C9—C10—C11−0.9 (2)
O3—C4—C5—Cl20.74 (19)C7—N1—C11—C100.0 (2)
C3—C4—C5—Cl2−178.96 (9)C9—C10—C11—N10.6 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.911 (18)1.867 (18)2.7461 (17)161.4 (18)
O4—H4···O10.77 (3)2.21 (3)2.6348 (16)115 (2)
O4—H4···O60.77 (3)2.04 (3)2.7187 (17)147 (3)
O5—H5···O10.85 (3)1.80 (3)2.6474 (17)172 (3)
O6—H6A···O2i0.80 (3)2.21 (3)2.8959 (18)144 (3)
O6—H6A···O3i0.80 (3)2.50 (3)3.1220 (17)136 (3)
O6—H6B···O1ii0.84 (4)2.11 (3)2.9281 (18)164 (3)
C7—H7···O60.952.593.484 (2)157
C9—H9···O4iii0.952.403.3084 (18)160
C10—H10···O3iv0.952.383.163 (2)140

Symmetry codes: (i) x, y, z−1; (ii) −x+2, −y+1, −z; (iii) x, y−1, z; (iv) x, y−1, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2567).

References

  • Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
  • Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  • Gotoh, K. & Ishida, H. (2009). Acta Cryst. E65, o2467. [PMC free article] [PubMed]
  • Gotoh, K., Nagoshi, H. & Ishida, H. (2009a). Acta Cryst. C65, o273–o277. [PubMed]
  • Gotoh, K., Nagoshi, H. & Ishida, H. (2009b). Acta Cryst. E65, o614. [PMC free article] [PubMed]
  • Higashi, T. (1999). ABSCOR. Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC. (2004). PROCESS-AUTO and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography