PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): m1580–m1581.
Published online 2009 November 14. doi:  10.1107/S1600536809046881
PMCID: PMC2971852

catena-Poly[[bis­(2,2′-bipyridine-κ2 N,N′)cadmium(II)]-μ-9,10-dioxo­anthracene-1,5-disulfonato-κ2 O 1:O 5]

Abstract

The title complex, [Cd(C14H6O8S2)(C10H8N2)2]n, exhibits a chain-like polymeric structure with 9,10-dioxoanthracene-1,5-disulfonate anions bridging CdII atoms in a bis-monodentate mode. The CdII atom shows a distorted octa­hedral environment, with four N atoms from two chelating 2,2′-bipyridine ligands forming the equatorial plane and two sulfonate O atoms from two 9,10-dioxoanthracene-1,5-disulfonate anions occupying the apical positions. Weak C—H(...)O hydrogen-bonding contacts and π–π inter­actions [centroid–centroid distances = 3.6920 (12) and 3.7095 (12) Å] connect the complex mol­ecules into a three-dimensional supra­molecular framework.

Related literature

For applications of organosulfonate-based metal complexes, see: Vaira et al. (2003 [triangle]). For a review on structural chemistry and properties of metal arenesulfonates, see: Cai (2004 [triangle]). For self-assembled structural motifs in coordination chemistry, see: Cai et al. (2001 [triangle]); Sun & Lees (2001 [triangle]); Swiegers & Malefetse (2000 [triangle]). For the synthetic procedure, see: Zhao et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1580-scheme1.jpg

Experimental

Crystal data

  • [Cd(C14H6O8S2)(C10H8N2)2]
  • M r = 791.08
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1580-efi1.jpg
  • a = 10.3807 (7) Å
  • b = 10.7406 (8) Å
  • c = 13.1289 (9) Å
  • α = 94.044 (1)°
  • β = 90.239 (1)°
  • γ = 97.025 (1)°
  • V = 1449.08 (18) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.96 mm−1
  • T = 296 K
  • 0.24 × 0.23 × 0.22 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.802, T max = 0.816
  • 7435 measured reflections
  • 5078 independent reflections
  • 4773 reflections with I > 2σ(I)
  • R int = 0.010

Refinement

  • R[F 2 > 2σ(F 2)] = 0.022
  • wR(F 2) = 0.061
  • S = 1.01
  • 5078 reflections
  • 442 parameters
  • H-atom parameters constrained
  • Δρmax = 0.29 e Å−3
  • Δρmin = −0.47 e Å−3

Data collection: APEX2 (Bruker, 2003 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]) and PLATON (Spek, 2009 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]) and DIAMOND (Brandenburg & Berndt, 1999 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809046881/si2219sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809046881/si2219Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors gratefully acknowledge financial support from the Youth Fund of Baicheng Normal University.

supplementary crystallographic information

Comment

The chemistry of metal sulfonate compounds has been a research field of rapid expansion in recent years, mainly due to their adjustable coordination ability and interesting applications as functional materials [Cai, 2004; Vaira et al., 2003; Zhao et al., 2007]. Coordination interaction, H-bonding and π–π interaction usually play important roles in constructing, tuning, modifying, controlling, and modulating such coordination architectures [Cai et al., 2001; Sun & Lees, 2001; Swiegers & Malefetse, 2000]. We herein report the crystal structure of a Cd II complex with 2,2'-bipyridine and 9,10-dioxoanthracene-1,5-disulfonate ligands (I).

The local coordination environment of CdII atom in I is shown in Fig.1. The unique CdII atom is six-coordinated by four N atoms from two unsymmetric bi-chelating 2,2'-bipyridine ligands and two sulfonate O atoms from two independent anthraquinone-1,5-disulfonate anions, exhibiting a slightly distorted octahedral coordination mode (Table 1). The anthraquinone-1,5-disulfonate anion adopts a bis-monodentate mode, linking the adjacent Cd II atoms into a one-dimentional infinite chain along the b-axis (Fig.2). The π–π stacking interactions between the adjacent 2,2'-bipyridine rings as well as weak C—H···O hydrogen-bonding interactions (Table 2) were observed (Fig. 2), which further extend the chains into a two-dimensional plane. Cg5···Cg5iii distance is 3.6920 (12) Å, the perpendicular distance between the inversion-related planes (therefore the dihedral angle is zero) is 3.291 Å, and the slippage (offset) is 1.674 Å. Cg5 is the centroid of the ring (N3, C11, C15, C14, C13, C12), and the symmetry code iii = 2 - x, -y, 1 - z. Additionally, the adjacent two-dimensional planes are extended into a three-dimensional supramolecular network by π–π stacking interactions between the anthraquinone rings. Cg9···Cg9iv distance is 3.7095 (12) Å, the plane-to-plane (perpendicular) distance between inversion related planes is 3.340 Å, the slippage is 1.615 Å, Cg9 is the centroid of the ring (C24, C25, C26, C27, C28, C29) and the symmetry code iv = 1 - x, 1 - y, 1 - z.

Experimental

A mixture of disodium 9,10-dioxoanthracene-1,5-disulfonate (41.2 mg, 0.1 mmol), Cd(OAc)2.2H2O(26.7 mg, 0.1 mmol), 2,2'-bipyridine(15.6 mg, 0.1 mmol), and H2O (10 ml) was sealed in a 23 ml teflonlined stainlesssteel vessel. The vessel was heated to 413 K for 2 days under autogenous pressure and then cooled to room temperature at a rate of 2.4 K / h. Pink block-shaped crystals suitable for X-ray analysis were obtained in a 39% yield. Analysis calculated for C34H22CdN4O8S2: C 51.62, H 2.80, N 7.08%; found: C 51.53, H 2.84, N 6.99%.

Refinement

H atoms were located in difference maps, but were subsequently placed in calculated positions and treated as riding, with C–H = 0.93 Å and O–H = 0.85 Å. All H atoms were allocated displacement parameters related to those of their parent atoms [Uiso(H) = Ueq(C, O)].

Figures

Fig. 1.
The local coordination environment of CdII in (I) drawn with 30% probability displacement ellipsoids. H atoms were omitted for clarity.
Fig. 2.
The three-dimensional supramolecular network of (I) produced by hydrogen-bonding and π–π stacking interactions.

Crystal data

[Cd(C14H6O8S2)(C10H8N2)2]Z = 2
Mr = 791.08F(000) = 796
Triclinic, P1Dx = 1.813 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.3807 (7) ÅCell parameters from 6497 reflections
b = 10.7406 (8) Åθ = 2.5–27.9°
c = 13.1289 (9) ŵ = 0.96 mm1
α = 94.044 (1)°T = 296 K
β = 90.239 (1)°BLOCK, pink
γ = 97.025 (1)°0.24 × 0.23 × 0.22 mm
V = 1449.08 (18) Å3

Data collection

Bruker APEXII CCD area-detector diffractometer5078 independent reflections
Radiation source: fine-focus sealed tube4773 reflections with I > 2σ(I)
graphiteRint = 0.010
[var phi] and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −12→10
Tmin = 0.802, Tmax = 0.816k = −12→12
7435 measured reflectionsl = −14→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.061H-atom parameters constrained
S = 1.01w = 1/[σ2(Fo2) + (0.0345P)2 + 0.8688P] where P = (Fo2 + 2Fc2)/3
5078 reflections(Δ/σ)max = 0.001
442 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = −0.47 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cd10.739498 (14)−0.019562 (14)0.758892 (11)0.02811 (7)
S10.98757 (5)0.25760 (5)0.82102 (4)0.03023 (12)
S20.49276 (5)0.76753 (5)0.66792 (4)0.03213 (13)
O11.06004 (17)0.33125 (16)0.74831 (15)0.0487 (4)
O20.92846 (15)0.13520 (14)0.77782 (13)0.0374 (4)
O31.06023 (18)0.24621 (18)0.91345 (14)0.0515 (5)
O40.56626 (15)0.81750 (15)0.76110 (13)0.0416 (4)
O50.36219 (14)0.71481 (15)0.68755 (13)0.0399 (4)
O60.50253 (18)0.85773 (17)0.59052 (15)0.0529 (5)
O70.8128 (2)0.29015 (19)0.64176 (13)0.0602 (6)
O80.49447 (18)0.5670 (2)0.82193 (14)0.0557 (5)
N10.73658 (17)0.02158 (16)0.93351 (13)0.0282 (4)
N20.57917 (17)0.11075 (16)0.79681 (13)0.0288 (4)
N30.79152 (17)−0.03642 (17)0.59157 (13)0.0287 (4)
N40.87250 (17)−0.18502 (17)0.73225 (14)0.0304 (4)
C10.6531 (2)0.09907 (19)0.97055 (15)0.0267 (4)
C20.8247 (2)−0.0124 (2)0.99750 (17)0.0348 (5)
H20.8824−0.06620.97180.042*
C30.8343 (2)0.0280 (2)1.09904 (17)0.0377 (5)
H30.89700.00261.14100.045*
C40.7489 (2)0.1070 (2)1.13697 (17)0.0397 (5)
H40.75290.13611.20540.048*
C50.6570 (2)0.1427 (2)1.07233 (17)0.0365 (5)
H50.59810.19571.09710.044*
C60.5603 (2)0.14002 (19)0.89629 (16)0.0272 (4)
C70.4978 (2)0.1472 (2)0.72820 (18)0.0366 (5)
H70.50970.12570.65930.044*
C80.3976 (2)0.2151 (2)0.75536 (19)0.0396 (5)
H80.34450.24100.70580.048*
C90.3776 (2)0.2439 (2)0.8570 (2)0.0415 (6)
H90.30950.28840.87750.050*
C100.4594 (2)0.2061 (2)0.92850 (18)0.0369 (5)
H100.44710.22470.99780.044*
C110.86840 (19)−0.12295 (19)0.55847 (16)0.0272 (4)
C120.7463 (2)0.0352 (2)0.52407 (17)0.0343 (5)
H120.69190.09360.54710.041*
C130.7761 (2)0.0268 (2)0.42227 (17)0.0386 (5)
H130.74310.07850.37730.046*
C140.8560 (2)−0.0599 (2)0.38872 (17)0.0382 (5)
H140.8791−0.06690.32040.046*
C150.9019 (2)−0.1368 (2)0.45681 (17)0.0345 (5)
H150.9547−0.19700.43460.041*
C160.9134 (2)−0.2036 (2)0.63649 (16)0.0286 (4)
C170.9074 (2)−0.2606 (2)0.80218 (18)0.0378 (5)
H170.8783−0.24870.86860.045*
C180.9840 (2)−0.3544 (2)0.7803 (2)0.0414 (6)
H181.0055−0.40530.83070.050*
C191.0281 (3)−0.3716 (2)0.6829 (2)0.0479 (6)
H191.0814−0.43340.66620.058*
C200.9924 (2)−0.2958 (2)0.6098 (2)0.0453 (6)
H201.0210−0.30640.54310.054*
C210.8573 (2)0.34568 (19)0.86396 (16)0.0279 (4)
C220.77142 (19)0.39712 (18)0.79997 (16)0.0261 (4)
C230.7662 (2)0.3762 (2)0.68705 (17)0.0328 (5)
C240.70328 (19)0.46704 (19)0.62757 (16)0.0275 (4)
C250.7262 (2)0.4667 (2)0.52374 (17)0.0356 (5)
H250.77320.40670.49230.043*
C260.6798 (2)0.5545 (2)0.46681 (17)0.0385 (5)
H260.69540.55430.39710.046*
C270.6094 (2)0.6439 (2)0.51434 (17)0.0344 (5)
H270.58160.70570.47640.041*
C280.58020 (19)0.64261 (19)0.61615 (16)0.0269 (4)
C290.62537 (19)0.55178 (19)0.67490 (16)0.0262 (4)
C300.5920 (2)0.5344 (2)0.78358 (17)0.0308 (5)
C310.6830 (2)0.47193 (19)0.84556 (16)0.0279 (4)
C320.6774 (2)0.4918 (2)0.95107 (17)0.0358 (5)
H320.61600.53930.98010.043*
C330.7620 (3)0.4417 (2)1.01259 (18)0.0436 (6)
H330.75910.45581.08320.052*
C340.8518 (2)0.3697 (2)0.96818 (17)0.0372 (5)
H340.90990.33671.00990.045*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cd10.03081 (10)0.03273 (10)0.02167 (9)0.00993 (6)0.00363 (6)−0.00262 (6)
S10.0275 (3)0.0272 (3)0.0373 (3)0.0088 (2)0.0022 (2)0.0019 (2)
S20.0279 (3)0.0281 (3)0.0418 (3)0.0109 (2)0.0022 (2)−0.0007 (2)
O10.0451 (10)0.0372 (9)0.0651 (12)0.0067 (8)0.0230 (9)0.0077 (8)
O20.0375 (9)0.0279 (8)0.0473 (10)0.0077 (7)0.0068 (7)−0.0008 (7)
O30.0477 (10)0.0599 (12)0.0507 (11)0.0287 (9)−0.0136 (8)−0.0065 (9)
O40.0343 (9)0.0393 (9)0.0485 (10)0.0036 (7)0.0039 (7)−0.0134 (8)
O50.0265 (8)0.0432 (9)0.0504 (10)0.0110 (7)0.0016 (7)−0.0048 (8)
O60.0564 (11)0.0424 (10)0.0667 (12)0.0250 (9)0.0120 (9)0.0186 (9)
O70.0969 (16)0.0589 (12)0.0339 (9)0.0549 (12)−0.0067 (10)−0.0112 (9)
O80.0515 (11)0.0800 (14)0.0464 (11)0.0417 (10)0.0220 (9)0.0206 (10)
N10.0290 (9)0.0311 (9)0.0250 (9)0.0072 (7)0.0027 (7)0.0002 (7)
N20.0295 (9)0.0299 (9)0.0274 (9)0.0069 (7)0.0019 (7)−0.0001 (7)
N30.0308 (9)0.0317 (9)0.0248 (9)0.0101 (7)0.0034 (7)−0.0003 (7)
N40.0336 (10)0.0285 (9)0.0295 (10)0.0059 (7)−0.0007 (8)0.0007 (7)
C10.0289 (10)0.0265 (10)0.0250 (10)0.0037 (8)0.0072 (8)0.0024 (8)
C20.0358 (12)0.0398 (13)0.0305 (11)0.0133 (10)0.0011 (9)0.0002 (10)
C30.0445 (13)0.0423 (13)0.0275 (11)0.0094 (11)−0.0034 (10)0.0051 (10)
C40.0572 (15)0.0431 (13)0.0197 (11)0.0107 (11)0.0026 (10)0.0005 (9)
C50.0453 (13)0.0377 (12)0.0281 (11)0.0126 (10)0.0082 (10)0.0007 (10)
C60.0279 (10)0.0231 (10)0.0301 (11)0.0026 (8)0.0040 (9)−0.0005 (8)
C70.0379 (12)0.0421 (13)0.0306 (12)0.0098 (10)−0.0025 (10)0.0004 (10)
C80.0348 (12)0.0384 (13)0.0465 (14)0.0091 (10)−0.0090 (10)0.0022 (11)
C90.0314 (12)0.0394 (13)0.0546 (15)0.0138 (10)0.0000 (11)−0.0060 (11)
C100.0358 (12)0.0382 (12)0.0372 (13)0.0099 (10)0.0061 (10)−0.0040 (10)
C110.0252 (10)0.0275 (10)0.0289 (11)0.0039 (8)0.0031 (8)−0.0003 (9)
C120.0364 (12)0.0382 (12)0.0307 (12)0.0141 (10)0.0035 (9)0.0033 (10)
C130.0379 (13)0.0499 (14)0.0307 (12)0.0121 (11)−0.0001 (10)0.0091 (10)
C140.0409 (13)0.0504 (14)0.0233 (11)0.0062 (11)0.0050 (10)0.0010 (10)
C150.0361 (12)0.0370 (12)0.0308 (12)0.0093 (10)0.0069 (9)−0.0040 (10)
C160.0252 (10)0.0284 (11)0.0324 (11)0.0040 (8)0.0034 (9)0.0008 (9)
C170.0479 (14)0.0351 (12)0.0296 (12)0.0025 (10)−0.0046 (10)0.0028 (10)
C180.0426 (13)0.0315 (12)0.0507 (15)0.0031 (10)−0.0137 (11)0.0100 (11)
C190.0462 (15)0.0433 (14)0.0590 (17)0.0209 (12)0.0053 (12)0.0102 (12)
C200.0475 (14)0.0459 (14)0.0477 (15)0.0226 (12)0.0161 (12)0.0090 (12)
C210.0288 (11)0.0253 (10)0.0302 (11)0.0063 (8)0.0022 (9)0.0002 (8)
C220.0271 (10)0.0222 (10)0.0291 (11)0.0047 (8)0.0022 (8)0.0001 (8)
C230.0364 (12)0.0311 (11)0.0323 (12)0.0140 (9)0.0003 (9)−0.0055 (9)
C240.0261 (10)0.0295 (11)0.0271 (11)0.0075 (8)−0.0017 (8)−0.0034 (8)
C250.0370 (12)0.0433 (13)0.0280 (11)0.0167 (10)0.0010 (9)−0.0073 (10)
C260.0417 (13)0.0506 (14)0.0249 (11)0.0139 (11)0.0027 (10)0.0010 (10)
C270.0332 (12)0.0387 (12)0.0333 (12)0.0101 (10)−0.0007 (9)0.0057 (10)
C280.0222 (10)0.0276 (10)0.0310 (11)0.0060 (8)−0.0008 (8)−0.0021 (9)
C290.0230 (10)0.0268 (10)0.0287 (11)0.0047 (8)−0.0002 (8)−0.0025 (8)
C300.0327 (11)0.0281 (11)0.0330 (11)0.0105 (9)0.0057 (9)0.0001 (9)
C310.0291 (11)0.0255 (10)0.0293 (11)0.0053 (8)0.0039 (9)−0.0001 (8)
C320.0406 (13)0.0355 (12)0.0329 (12)0.0138 (10)0.0080 (10)−0.0031 (10)
C330.0538 (15)0.0522 (15)0.0266 (12)0.0178 (12)0.0011 (11)−0.0035 (11)
C340.0423 (13)0.0407 (13)0.0304 (12)0.0130 (10)−0.0032 (10)0.0016 (10)

Geometric parameters (Å, °)

Cd1—N32.2645 (17)C10—H100.9300
Cd1—N12.3050 (17)C11—C151.383 (3)
Cd1—N22.3356 (17)C11—C161.496 (3)
Cd1—O4i2.3527 (16)C12—C131.373 (3)
Cd1—N42.3882 (17)C12—H120.9300
Cd1—O22.4109 (16)C13—C141.373 (3)
S1—O11.4387 (18)C13—H130.9300
S1—O31.4465 (18)C14—C151.380 (3)
S1—O21.4564 (16)C14—H140.9300
S1—C211.813 (2)C15—H150.9300
S2—O51.4353 (17)C16—C201.389 (3)
S2—O61.4481 (19)C17—C181.374 (3)
S2—O41.4719 (18)C17—H170.9300
S2—C281.806 (2)C18—C191.368 (4)
O4—Cd1ii2.3527 (16)C18—H180.9300
O7—C231.215 (3)C19—C201.379 (4)
O8—C301.211 (3)C19—H190.9300
N1—C21.340 (3)C20—H200.9300
N1—C11.343 (3)C21—C341.377 (3)
N2—C61.342 (3)C21—C221.409 (3)
N2—C71.343 (3)C22—C311.402 (3)
N3—C121.334 (3)C22—C231.483 (3)
N3—C111.348 (3)C23—C241.499 (3)
N4—C161.338 (3)C24—C251.385 (3)
N4—C171.344 (3)C24—C291.405 (3)
C1—C51.383 (3)C25—C261.374 (3)
C1—C61.492 (3)C25—H250.9300
C2—C31.372 (3)C26—C271.391 (3)
C2—H20.9300C26—H260.9300
C3—C41.371 (3)C27—C281.373 (3)
C3—H30.9300C27—H270.9300
C4—C51.381 (3)C28—C291.408 (3)
C4—H40.9300C29—C301.489 (3)
C5—H50.9300C30—C311.494 (3)
C6—C101.387 (3)C31—C321.389 (3)
C7—C81.376 (3)C32—C331.373 (3)
C7—H70.9300C32—H320.9300
C8—C91.371 (4)C33—C341.388 (3)
C8—H80.9300C33—H330.9300
C9—C101.378 (3)C34—H340.9300
C9—H90.9300
N3—Cd1—N1166.26 (6)N3—C11—C16116.78 (18)
N3—Cd1—N2114.20 (6)C15—C11—C16122.14 (19)
N1—Cd1—N271.82 (6)N3—C12—C13123.1 (2)
N3—Cd1—O4i100.05 (6)N3—C12—H12118.4
N1—Cd1—O4i92.77 (6)C13—C12—H12118.4
N2—Cd1—O4i84.02 (6)C12—C13—C14118.1 (2)
N3—Cd1—N471.49 (6)C12—C13—H13120.9
N1—Cd1—N4105.00 (6)C14—C13—H13120.9
N2—Cd1—N4168.49 (6)C13—C14—C15119.7 (2)
O4i—Cd1—N485.11 (6)C13—C14—H14120.1
N3—Cd1—O285.54 (6)C15—C14—H14120.1
N1—Cd1—O281.21 (6)C14—C15—C11119.1 (2)
N2—Cd1—O299.17 (6)C14—C15—H15120.4
O4i—Cd1—O2171.85 (6)C11—C15—H15120.4
N4—Cd1—O291.13 (6)N4—C16—C20121.5 (2)
O1—S1—O3113.39 (12)N4—C16—C11117.42 (18)
O1—S1—O2113.56 (10)C20—C16—C11121.1 (2)
O3—S1—O2111.31 (11)N4—C17—C18123.2 (2)
O1—S1—C21106.45 (10)N4—C17—H17118.4
O3—S1—C21103.90 (10)C18—C17—H17118.4
O2—S1—C21107.45 (9)C19—C18—C17118.7 (2)
O5—S2—O6113.97 (11)C19—C18—H18120.7
O5—S2—O4113.30 (10)C17—C18—H18120.7
O6—S2—O4111.62 (12)C18—C19—C20119.0 (2)
O5—S2—C28108.28 (10)C18—C19—H19120.5
O6—S2—C28104.48 (10)C20—C19—H19120.5
O4—S2—C28104.26 (9)C19—C20—C16119.6 (2)
S1—O2—Cd1148.54 (9)C19—C20—H20120.2
S2—O4—Cd1ii122.01 (10)C16—C20—H20120.2
C2—N1—C1118.40 (18)C34—C21—C22119.58 (19)
C2—N1—Cd1123.63 (14)C34—C21—S1114.81 (16)
C1—N1—Cd1117.25 (13)C22—C21—S1125.42 (16)
C6—N2—C7118.44 (18)C31—C22—C21118.18 (19)
C6—N2—Cd1116.16 (13)C31—C22—C23117.20 (18)
C7—N2—Cd1125.05 (14)C21—C22—C23124.61 (18)
C12—N3—C11118.79 (18)O7—C23—C22122.5 (2)
C12—N3—Cd1121.94 (14)O7—C23—C24119.4 (2)
C11—N3—Cd1119.26 (14)C22—C23—C24118.09 (17)
C16—N4—C17118.06 (19)C25—C24—C29120.49 (19)
C16—N4—Cd1115.03 (14)C25—C24—C23117.80 (18)
C17—N4—Cd1126.90 (15)C29—C24—C23121.70 (19)
N1—C1—C5121.1 (2)C26—C25—C24120.4 (2)
N1—C1—C6117.06 (18)C26—C25—H25119.8
C5—C1—C6121.76 (19)C24—C25—H25119.8
N1—C2—C3123.4 (2)C25—C26—C27119.4 (2)
N1—C2—H2118.3C25—C26—H26120.3
C3—C2—H2118.3C27—C26—H26120.3
C4—C3—C2118.3 (2)C28—C27—C26121.3 (2)
C4—C3—H3120.9C28—C27—H27119.4
C2—C3—H3120.9C26—C27—H27119.4
C3—C4—C5119.2 (2)C27—C28—C29119.72 (19)
C3—C4—H4120.4C27—C28—S2116.19 (16)
C5—C4—H4120.4C29—C28—S2123.97 (16)
C4—C5—C1119.6 (2)C24—C29—C28118.45 (19)
C4—C5—H5120.2C24—C29—C30116.71 (18)
C1—C5—H5120.2C28—C29—C30124.78 (18)
N2—C6—C10121.4 (2)O8—C30—C29122.7 (2)
N2—C6—C1117.14 (17)O8—C30—C31119.8 (2)
C10—C6—C1121.50 (19)C29—C30—C31117.46 (17)
N2—C7—C8122.9 (2)C32—C31—C22121.0 (2)
N2—C7—H7118.6C32—C31—C30117.17 (18)
C8—C7—H7118.6C22—C31—C30121.86 (19)
C9—C8—C7118.7 (2)C33—C32—C31120.3 (2)
C9—C8—H8120.7C33—C32—H32119.9
C7—C8—H8120.7C31—C32—H32119.9
C8—C9—C10119.2 (2)C32—C33—C34119.2 (2)
C8—C9—H9120.4C32—C33—H33120.4
C10—C9—H9120.4C34—C33—H33120.4
C9—C10—C6119.4 (2)C21—C34—C33121.7 (2)
C9—C10—H10120.3C21—C34—H34119.1
C6—C10—H10120.3C33—C34—H34119.1
N3—C11—C15121.1 (2)
O1—S1—O2—Cd1−133.06 (19)Cd1—N3—C11—C160.5 (2)
O3—S1—O2—Cd197.5 (2)C11—N3—C12—C13−1.3 (3)
C21—S1—O2—Cd1−15.6 (2)Cd1—N3—C12—C13−179.92 (18)
N3—Cd1—O2—S1135.7 (2)N3—C12—C13—C140.3 (4)
N1—Cd1—O2—S1−47.93 (19)C12—C13—C14—C151.0 (4)
N2—Cd1—O2—S121.9 (2)C13—C14—C15—C11−1.3 (4)
O4i—Cd1—O2—S1−90.6 (4)N3—C11—C15—C140.3 (3)
N4—Cd1—O2—S1−152.9 (2)C16—C11—C15—C14179.4 (2)
O5—S2—O4—Cd1ii−153.24 (9)C17—N4—C16—C20−1.6 (3)
O6—S2—O4—Cd1ii−22.97 (14)Cd1—N4—C16—C20179.43 (18)
C28—S2—O4—Cd1ii89.25 (12)C17—N4—C16—C11177.09 (19)
N3—Cd1—N1—C2−54.1 (3)Cd1—N4—C16—C11−1.9 (2)
N2—Cd1—N1—C2−172.37 (19)N3—C11—C16—N41.0 (3)
O4i—Cd1—N1—C2104.84 (18)C15—C11—C16—N4−178.1 (2)
N4—Cd1—N1—C219.17 (19)N3—C11—C16—C20179.7 (2)
O2—Cd1—N1—C2−69.64 (17)C15—C11—C16—C200.6 (3)
N3—Cd1—N1—C1116.1 (3)C16—N4—C17—C180.8 (3)
N2—Cd1—N1—C1−2.19 (14)Cd1—N4—C17—C18179.62 (17)
O4i—Cd1—N1—C1−84.98 (15)N4—C17—C18—C190.6 (4)
N4—Cd1—N1—C1−170.65 (14)C17—C18—C19—C20−1.2 (4)
O2—Cd1—N1—C1100.54 (15)C18—C19—C20—C160.4 (4)
N3—Cd1—N2—C6−169.45 (14)N4—C16—C20—C191.1 (4)
N1—Cd1—N2—C6−2.71 (14)C11—C16—C20—C19−177.6 (2)
O4i—Cd1—N2—C692.20 (15)O1—S1—C21—C34−125.08 (19)
N4—Cd1—N2—C673.0 (3)O3—S1—C21—C34−5.1 (2)
O2—Cd1—N2—C6−80.24 (15)O2—S1—C21—C34112.94 (18)
N3—Cd1—N2—C717.4 (2)O1—S1—C21—C2249.9 (2)
N1—Cd1—N2—C7−175.85 (19)O3—S1—C21—C22169.90 (19)
O4i—Cd1—N2—C7−80.94 (18)O2—S1—C21—C22−72.0 (2)
N4—Cd1—N2—C7−100.1 (3)C34—C21—C22—C310.2 (3)
O2—Cd1—N2—C7106.62 (18)S1—C21—C22—C31−174.63 (16)
N1—Cd1—N3—C12−105.1 (3)C34—C21—C22—C23−178.8 (2)
N2—Cd1—N3—C128.35 (19)S1—C21—C22—C236.4 (3)
O4i—Cd1—N3—C1296.27 (17)C31—C22—C23—O7−160.9 (2)
N4—Cd1—N3—C12177.60 (19)C21—C22—C23—O718.1 (4)
O2—Cd1—N3—C12−89.71 (17)C31—C22—C23—C2420.5 (3)
N1—Cd1—N3—C1176.2 (3)C21—C22—C23—C24−160.5 (2)
N2—Cd1—N3—C11−170.32 (15)O7—C23—C24—C25−14.3 (3)
O4i—Cd1—N3—C11−82.40 (16)C22—C23—C24—C25164.3 (2)
N4—Cd1—N3—C11−1.07 (15)O7—C23—C24—C29166.8 (2)
O2—Cd1—N3—C1191.62 (16)C22—C23—C24—C29−14.5 (3)
N3—Cd1—N4—C161.55 (14)C29—C24—C25—C264.1 (3)
N1—Cd1—N4—C16−164.57 (14)C23—C24—C25—C26−174.7 (2)
N2—Cd1—N4—C16123.0 (3)C24—C25—C26—C27−0.1 (4)
O4i—Cd1—N4—C16103.87 (15)C25—C26—C27—C28−3.0 (4)
O2—Cd1—N4—C16−83.37 (15)C26—C27—C28—C292.0 (3)
N3—Cd1—N4—C17−177.3 (2)C26—C27—C28—S2178.08 (18)
N1—Cd1—N4—C1716.59 (19)O5—S2—C28—C27108.37 (18)
N2—Cd1—N4—C17−55.8 (4)O6—S2—C28—C27−13.4 (2)
O4i—Cd1—N4—C17−74.98 (19)O4—S2—C28—C27−130.72 (17)
O2—Cd1—N4—C1797.79 (19)O5—S2—C28—C29−75.71 (19)
C2—N1—C1—C5−0.3 (3)O6—S2—C28—C29162.48 (18)
Cd1—N1—C1—C5−171.01 (16)O4—S2—C28—C2945.2 (2)
C2—N1—C1—C6177.15 (19)C25—C24—C29—C28−5.1 (3)
Cd1—N1—C1—C66.4 (2)C23—C24—C29—C28173.74 (19)
C1—N1—C2—C3−0.1 (3)C25—C24—C29—C30172.3 (2)
Cd1—N1—C2—C3169.98 (18)C23—C24—C29—C30−8.9 (3)
N1—C2—C3—C40.2 (4)C27—C28—C29—C242.0 (3)
C2—C3—C4—C50.1 (4)S2—C28—C29—C24−173.74 (15)
C3—C4—C5—C1−0.5 (4)C27—C28—C29—C30−175.1 (2)
N1—C1—C5—C40.6 (3)S2—C28—C29—C309.1 (3)
C6—C1—C5—C4−176.8 (2)C24—C29—C30—O8−153.2 (2)
C7—N2—C6—C100.2 (3)C28—C29—C30—O824.0 (3)
Cd1—N2—C6—C10−173.46 (16)C24—C29—C30—C3125.7 (3)
C7—N2—C6—C1−179.50 (19)C28—C29—C30—C31−157.10 (19)
Cd1—N2—C6—C16.9 (2)C21—C22—C31—C32−1.9 (3)
N1—C1—C6—N2−9.0 (3)C23—C22—C31—C32177.2 (2)
C5—C1—C6—N2168.4 (2)C21—C22—C31—C30177.53 (19)
N1—C1—C6—C10171.4 (2)C23—C22—C31—C30−3.4 (3)
C5—C1—C6—C10−11.2 (3)O8—C30—C31—C32−21.7 (3)
C6—N2—C7—C81.2 (3)C29—C30—C31—C32159.4 (2)
Cd1—N2—C7—C8174.19 (18)O8—C30—C31—C22158.9 (2)
N2—C7—C8—C9−1.9 (4)C29—C30—C31—C22−20.1 (3)
C7—C8—C9—C101.2 (4)C22—C31—C32—C332.2 (4)
C8—C9—C10—C60.1 (4)C30—C31—C32—C33−177.2 (2)
N2—C6—C10—C9−0.8 (3)C31—C32—C33—C34−0.8 (4)
C1—C6—C10—C9178.8 (2)C22—C21—C34—C331.2 (4)
C12—N3—C11—C150.9 (3)S1—C21—C34—C33176.5 (2)
Cd1—N3—C11—C15179.65 (16)C32—C33—C34—C21−0.9 (4)
C12—N3—C11—C16−178.19 (19)

Symmetry codes: (i) x, y−1, z; (ii) x, y+1, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C4—H4···O5iii0.932.483.200 (3)135
C5—H5···O4iii0.932.533.239 (3)133
C14—H14···O2iv0.932.543.267 (3)136

Symmetry codes: (iii) −x+1, −y+1, −z+2; (iv) −x+2, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2219).

References

  • Brandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  • Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2003). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cai, J. W. (2004). Coord. Chem. Rev. 248, 1061–1083.
  • Cai, J. W., Chen, C. H., Liao, C. Z., Yao, J. H., Hu, X. P. & Chen, X. M. (2001). J. Chem. Soc. Dalton Trans. pp. 1137–1142.
  • Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Sun, S. S. & Lees, A. J. (2001). Chem. Commun. pp. 103–104.
  • Swiegers, G. F. & Malefetse, T. J. (2000). Chem. Rev. 100, 3483–3537. [PubMed]
  • Vaira, M. D., Orioli, P., Piccioli, F., Bruni, B. & Messori, L. (2003). Inorg. Chem. 42, 3157–3159. [PubMed]
  • Zhao, J. P., Hu, B. W., Liu, F. C., Hu, X., Zeng, Y. F. & Bu, X. H. (2007). CrystEngComm, 9, 902–906.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography