PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): o3241.
Published online 2009 November 28. doi:  10.1107/S1600536809050296
PMCID: PMC2971851

2-[(E)-(1H-Pyrrol-2-ylmethyl­idene)hydrazinyl]pyridine monohydrate

Abstract

The title hydrate, C10H10N4·H2O, shows a small twist in the hydro­zone derivative, the dihedral angle between the pyridine and pyrrole rings being 11.08 (12)°. The pyridine and pyrrole N atoms lie to the same side of the mol­ecule being sustained in place by hydrogen-bonding inter­actions with the water mol­ecule. Further inter­molecular O—H(...)N and N—H(...)O hydrogen bonding leads to the formation of supra­molecular arrays in the ab plane.

Related literature

For related structures of hydro­zone derivatives, see: Baddeley et al. (2009 [triangle]); Ferguson et al. (2005 [triangle]); Wardell, Low & Glidewell (2007 [triangle]); Wardell, Skakle, Low & Glidewell (2007 [triangle]). For additional structural analaysis, see: Spek (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o3241-scheme1.jpg

Experimental

Crystal data

  • C10H10N4·H2O
  • M r = 204.24
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o3241-efi1.jpg
  • a = 5.6479 (3) Å
  • b = 7.4383 (4) Å
  • c = 24.4233 (11) Å
  • β = 103.300 (3)°
  • V = 998.52 (9) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 120 K
  • 0.24 × 0.22 × 0.04 mm

Data collection

  • Nonius KappaCCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007 [triangle]) T min = 0.670, T max = 0.746
  • 3068 measured reflections
  • 1680 independent reflections
  • 1636 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.109
  • S = 1.07
  • 1680 reflections
  • 149 parameters
  • 4 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.19 e Å−3
  • Δρmin = −0.24 e Å−3

Data collection: COLLECT (Hooft, 1998 [triangle]); cell refinement: DENZO (Otwinowski & Minor, 1997 [triangle]) and COLLECT data reduction: DENZO nd COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809050296/hg2608sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809050296/hg2608Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from FAPEMIG (Brazil).

supplementary crystallographic information

Comment

In continuation of studies into the supramolecular arrangements of hydrazones (Baddeley et al., 2009; Wardell, Skakle et al., 2007; Wardell, Low et al., 2007; Ferguson et al., 2005), we now report the structure of the title hydrate, (I).

The molecule of (I), Fig. 1, is non-planar owing to a twist about the C6–C7 bond as seen in the C3–C6–C7–N4 torsion angle of -11.2 (3) °. The dihedral angle between the pyrrole and pyridine rings is 11.08 (12) °. The conformation about the C6═N3 bond is E and the pyrrole- and pyridine-N atoms are syn. This arrangement is stabilized by pyrrole-NH···Owater and water-OH···Npyridine hydrogen bonds, Fig. 1 and Table 1.

The water molecule also plays a pivotal role in stabilizing the crystal structure, forming additional donor and acceptor interactions to link three distinct molecules. The molecules stack into columns aligned along the a axis and alternate between organic and water molecules along the b axis, Fig. 2 and Table 1. The resultant layers stack along the c axis, Fig. 3.

Experimental

A solution of 2-hydrazinopyridine (0.330 g, 3 mmol) in MeOH (15 ml) was added to a solution of 2-pyrrolcarboxaldehyde (0.270 g, 3 mmol) in MeOH (10 ml). The reaction mixture was refluxed for 20 min, and maintained at room temperature. The crystals which slowly formed were collected and recrystallized twice from MeOH. M. pt. 449 - 452 K. IR(KBr, cm-1): ν 1603(C=N). Anal. Found, C, 59.13; H, 5.81; N, 27.71. Calc. for C10H10N4.H2O: C, 58.82; H, 5.92; N, 27.43%

Refinement

The C-bound H atoms were geometrically placed (C–H = 0.95 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The O– and N-bound H atoms were located from a difference map and included in their idealized positions with O–H = 0.84±0.01 and N–H = 0.88±0.01 Å, and with Uiso(H) = nUeq(O, N); n = 1.5 for O and n = 1.2 for N. After analysis with PLATON (Spek, 2003), the structure was refined as a twin, with the twin component related by -1 0 0, 0 - 1 0, 2 0 1, and with a fractional contribution of 0.4418 (23).

Figures

Fig. 1.
The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. The O—H···N and N—H···O hydrogen bonds are shown as orange dashed ...
Fig. 2.
A side-on view of a supramolecular layer in (I) showing O–H···N and N–H···O hydrogen bonding between the molecules (orange dashed lines). Colour code: O, red; N, blue; C, grey; and H, green. ...
Fig. 3.
A view in projection down the b axis showing the stacking of layers along the c axis in (I). The O–H···N and N–H···O hydrogen bonding is shown as orange dashed lines. Colour code: O, red; ...

Crystal data

C10H10N4·H2OF(000) = 432
Mr = 204.24Dx = 1.359 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 18744 reflections
a = 5.6479 (3) Åθ = 2.9–27.5°
b = 7.4383 (4) ŵ = 0.09 mm1
c = 24.4233 (11) ÅT = 120 K
β = 103.300 (3)°Block, colourless
V = 998.52 (9) Å30.24 × 0.22 × 0.04 mm
Z = 4

Data collection

Nonius KappaCCD area-detector diffractometer1680 independent reflections
Radiation source: Enraf Nonius FR591 rotating anode1636 reflections with I > 2σ(I)
10 cm confocal mirrorsRint = 0.027
Detector resolution: 9.091 pixels mm-1θmax = 25.0°, θmin = 3.2°
[var phi] and ω scansh = −6→6
Absorption correction: multi-scan (SADABS; Sheldrick, 2007)k = −8→8
Tmin = 0.670, Tmax = 0.746l = −28→28
3068 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.07w = 1/[σ2(Fo2) + (0.0651P)2 + 0.3833P] where P = (Fo2 + 2Fc2)/3
1680 reflections(Δ/σ)max < 0.001
149 parametersΔρmax = 0.19 e Å3
4 restraintsΔρmin = −0.24 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O1W0.0268 (3)0.5726 (2)0.74096 (6)0.0234 (4)
H1W0.088 (5)0.635 (3)0.7695 (7)0.035*
H2W−0.071 (4)0.501 (3)0.7507 (11)0.035*
N10.2897 (3)0.7646 (2)0.83791 (7)0.0221 (4)
N20.5539 (4)0.8844 (2)0.78669 (8)0.0218 (4)
H2N0.694 (3)0.935 (3)0.7844 (10)0.026*
N30.3760 (4)0.8612 (2)0.73892 (7)0.0205 (4)
N40.0207 (4)0.7784 (2)0.64316 (7)0.0205 (4)
H4N0.000 (5)0.726 (3)0.6740 (6)0.025*
C10.4955 (4)0.8541 (3)0.83784 (8)0.0193 (4)
C20.2360 (4)0.7344 (3)0.88823 (8)0.0238 (5)
H20.09040.67100.88860.029*
C30.3790 (5)0.7898 (3)0.93898 (9)0.0257 (5)
H30.33460.76540.97350.031*
C40.5912 (5)0.8829 (3)0.93755 (9)0.0250 (5)
H40.69420.92450.97160.030*
C50.6526 (4)0.9152 (3)0.88711 (9)0.0229 (5)
H50.79810.97740.88580.027*
C60.4278 (4)0.8846 (3)0.69071 (8)0.0204 (5)
H60.58700.91910.68820.024*
C70.2393 (4)0.8574 (3)0.64086 (8)0.0196 (5)
C8−0.1198 (4)0.7629 (3)0.59024 (8)0.0230 (5)
H8−0.27750.71090.58040.028*
C90.0049 (4)0.8353 (3)0.55333 (8)0.0240 (5)
H9−0.05220.84330.51370.029*
C100.2326 (5)0.8955 (3)0.58482 (8)0.0218 (5)
H100.35710.95120.57050.026*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O1W0.0245 (9)0.0239 (7)0.0224 (7)−0.0061 (6)0.0065 (7)0.0001 (6)
N10.0242 (10)0.0196 (9)0.0231 (9)−0.0003 (8)0.0066 (8)0.0013 (7)
N20.0194 (10)0.0269 (10)0.0200 (8)−0.0038 (8)0.0060 (8)0.0001 (7)
N30.0214 (9)0.0194 (8)0.0199 (8)−0.0005 (7)0.0027 (8)0.0005 (7)
N40.0229 (10)0.0191 (8)0.0200 (8)−0.0011 (8)0.0062 (7)0.0014 (7)
C10.0202 (11)0.0159 (9)0.0217 (10)0.0028 (9)0.0048 (9)0.0013 (8)
C20.0269 (12)0.0195 (9)0.0278 (10)0.0027 (9)0.0120 (10)0.0032 (9)
C30.0361 (13)0.0211 (10)0.0215 (9)0.0040 (10)0.0102 (10)0.0029 (9)
C40.0335 (13)0.0191 (10)0.0198 (10)0.0034 (10)0.0007 (10)−0.0001 (9)
C50.0251 (13)0.0178 (9)0.0241 (10)0.0005 (9)0.0025 (10)0.0003 (8)
C60.0209 (11)0.0176 (10)0.0241 (9)−0.0001 (8)0.0080 (10)−0.0016 (8)
C70.0221 (12)0.0166 (9)0.0210 (10)0.0006 (9)0.0069 (9)0.0005 (8)
C80.0226 (12)0.0209 (10)0.0243 (9)−0.0008 (9)0.0027 (9)−0.0020 (8)
C90.0301 (13)0.0219 (10)0.0179 (9)0.0025 (9)0.0013 (9)0.0005 (9)
C100.0243 (12)0.0188 (10)0.0234 (10)−0.0005 (9)0.0080 (9)−0.0008 (8)

Geometric parameters (Å, °)

O1W—H1W0.842 (10)C3—C41.392 (4)
O1W—H2W0.840 (10)C3—H30.9500
N1—C11.340 (3)C4—C51.375 (3)
N1—C21.350 (3)C4—H40.9500
N2—N31.364 (3)C5—H50.9500
N2—C11.382 (3)C6—C71.435 (3)
N2—H2N0.886 (10)C6—H60.9500
N3—C61.289 (3)C7—C101.390 (3)
N4—C81.357 (3)C8—C91.375 (3)
N4—C71.380 (3)C8—H80.9500
N4—H4N0.879 (10)C9—C101.411 (3)
C1—C51.396 (3)C9—H90.9500
C2—C31.377 (3)C10—H100.9500
C2—H20.9500
H1W—O1W—H2W107 (2)C3—C4—H4119.8
C1—N1—C2117.39 (19)C4—C5—C1118.3 (2)
N3—N2—C1118.06 (17)C4—C5—H5120.9
N3—N2—H2N119.3 (16)C1—C5—H5120.9
C1—N2—H2N121.9 (16)N3—C6—C7118.4 (2)
C6—N3—N2119.13 (18)N3—C6—H6120.8
C8—N4—C7109.25 (17)C7—C6—H6120.8
C8—N4—H4N127.9 (16)N4—C7—C10107.7 (2)
C7—N4—H4N121.4 (17)N4—C7—C6121.43 (19)
N1—C1—N2118.01 (18)C10—C7—C6130.8 (2)
N1—C1—C5122.68 (19)N4—C8—C9108.4 (2)
N2—C1—C5119.31 (19)N4—C8—H8125.8
N1—C2—C3124.2 (2)C9—C8—H8125.8
N1—C2—H2117.9C8—C9—C10107.86 (18)
C3—C2—H2117.9C8—C9—H9126.1
C2—C3—C4117.1 (2)C10—C9—H9126.1
C2—C3—H3121.4C7—C10—C9106.7 (2)
C4—C3—H3121.4C7—C10—H10126.6
C5—C4—C3120.3 (2)C9—C10—H10126.6
C5—C4—H4119.8
C1—N2—N3—C6−178.42 (18)N2—N3—C6—C7179.22 (17)
C2—N1—C1—N2179.37 (18)C8—N4—C7—C101.2 (2)
C2—N1—C1—C50.2 (3)C8—N4—C7—C6−177.71 (19)
N3—N2—C1—N115.4 (3)N3—C6—C7—N4−11.2 (3)
N3—N2—C1—C5−165.42 (17)N3—C6—C7—C10170.2 (2)
C1—N1—C2—C30.0 (3)C7—N4—C8—C9−1.2 (2)
N1—C2—C3—C40.2 (3)N4—C8—C9—C100.8 (2)
C2—C3—C4—C5−0.6 (3)N4—C7—C10—C9−0.6 (2)
C3—C4—C5—C10.8 (3)C6—C7—C10—C9178.1 (2)
N1—C1—C5—C4−0.6 (3)C8—C9—C10—C7−0.1 (2)
N2—C1—C5—C4−179.75 (18)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1w—H1w···N10.842 (10)2.037 (11)2.870 (2)170 (3)
O1w—H2w···N3i0.840 (10)2.078 (12)2.899 (3)166 (3)
N2—H2n···O1wii0.886 (10)2.092 (12)2.959 (3)166 (2)
N4—H4n···O1w0.879 (10)1.971 (11)2.831 (2)165 (2)

Symmetry codes: (i) −x, y−1/2, −z+3/2; (ii) −x+1, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2608).

References

  • Baddeley, T. C., França, L. de S., Howie, R. A., de Lima, G. M., Skakle, J. M. S., de Souza, J. D., Wardell, J. L. & Wardell, S. M. S. V. (2009). Z. Kristallogr. 224, 213–224.
  • Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  • Ferguson, G., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. C61, o613–o616. [PubMed]
  • Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13.
  • Wardell, J. L., Low, J. N. & Glidewell, C. (2007). Acta Cryst. E63, o1848–o1850.
  • Wardell, J. L., Skakle, J. M. S., Low, J. N. & Glidewell, C. (2007). Acta Cryst. C63, o462–o467. [PubMed]
  • Westrip, S. P. (2009). publCIF. In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography