PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): m1630.
Published online 2009 November 21. doi:  10.1107/S1600536809048582
PMCID: PMC2971849

2-1,4-Bis[2-(4-pyrid­yl)ethen­yl]benzene-κ2 N:N′}bis­[bis­(acetyl­acetonato-κ2 O,O′)copper(II)]

Abstract

The asymmetric unit of the title compound, [Cu2(C5H7O2)4(C20H16N2)], contains half of a centrosymmetric dinuclear mol­ecule. In the mol­ecule, each Cu center is coordinated by four O atoms from two acetyl­acetonate ligands and one N atom from the bridging linear 1,4-bis­[2-(4-pyrid­yl)ethen­yl]benzene ligand in a square-pyramidal geometry. In the crystal structure, weak inter­molecular C—H(...)O hydrogen bonds link mol­ecules into sheets parallel to the bc plane.

Related literature

For coordination complexes with inter­esting topologies or properties, see: Ma et al. (2009 [triangle]); Liu et al. (2008 [triangle]). For long ligands, see: Banfi et al. (2002 [triangle]); Niu et al. (2001 [triangle]); Coe et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1630-scheme1.jpg

Experimental

Crystal data

  • [Cu2(C5H7O2)4(C20H16N2)]
  • M r = 807.85
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1630-efi1.jpg
  • a = 7.9584 (16) Å
  • b = 18.594 (4) Å
  • c = 15.063 (4) Å
  • β = 120.97 (2)°
  • V = 1911.2 (8) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.17 mm−1
  • T = 293 K
  • 0.25 × 0.21 × 0.20 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000 [triangle]) T min = 0.759, T max = 0.800
  • 7784 measured reflections
  • 3352 independent reflections
  • 2807 reflections with I > 2σ(I)
  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.113
  • S = 0.99
  • 3352 reflections
  • 235 parameters
  • H-atom parameters constrained
  • Δρmax = 0.41 e Å−3
  • Δρmin = −0.19 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809048582/cv2655sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809048582/cv2655Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported financially by the Doctoral Fund of Shandaong Province (No. 2007BS04046).

supplementary crystallographic information

Comment

Metal ions and organic ligands are considered as the most important factors for designing the coordination networks (Ma et al., 2009). Up to now, it is still a challenge to predict the exact structure and understand the roles of both factors in crystal engineering. The flexible bridging ligands can afford different conformation with interesting topologies or properties (Liu et al., 2008). Among the others, long bis(pyridyl) ligands are used to construct the connectivity and geometry with different coordination sites metal ions, and often lead to interesting structural motifs (Ma et al., 2009). A large number of examples of particularly long ligands - 1,4-phenylenebis(4-pyridylmethanone), bis(4-pyridyl)terephthalate (Banfi et al., 2002), N,N'-bis(4-pyridylmethyl)piperazine (Niu et al., 2001), N-phenyl-1,4-bis(E-2-(4-pyridyl)ethenyl)benzene (Coe et al., 2006), have been adopted for the self-assembly of coordination polymers, such as one-dimensional coordination chains, double helices, two dimensional layered structures, interpenetrated ladders, interpenetrated frameworks and so on (Banfi et al., 2002). Herein, we present the shoulder-pole coordination compound based on 1,4-bis(2-(4-pyridyl)ethenyl)benzole (bpyph) ligand, and describe its crystal structure.

In the title structure (Fig. 1),each Cu center is coordinated by four O atoms and one N atom from the bpyph ligand in a distorted pyramidal geometry. The linear bpyph ligand links two acetylacetonate copper(II) by Cu—N bonds, displaying the shoulder-pole model. In the crystal structure, weak intermolecular C—H···O hydrogen bonds (Table 1) link molecules into sheets parallel to bc plane.

Experimental

1,4-Bis(2-(4-pyridyl)ethenyl)benzene (2.84 g, 0.01 mol) and acetylacetonate copper(II) (5.23 g, 0.02 mol) in 2:1 molar ratio was dissolved in ethanol solution (40 ml) and refluxed for 2 h. After cooling and filtering, the blue block crystals were collected after 4 days (yield 42.35%).

Refinement

All H atoms were positioned geometrically (C—H 0.93–0.96 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq of the parent atom.

Figures

Fig. 1.
The molecular structure of the title compound with the atom-labeling scheme [symmetry code: (A) 1-x, -y, 1-z]. H atoms omited for clarity. Displacement ellipsoids are drawn at the 30% probability level.

Crystal data

[Cu2(C5H7O2)4(C20H16N2)]F(000) = 840
Mr = 807.85Dx = 1.404 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1253 reflections
a = 7.9584 (16) Åθ = 1.9–25.0°
b = 18.594 (4) ŵ = 1.17 mm1
c = 15.063 (4) ÅT = 293 K
β = 120.97 (2)°Block, blue
V = 1911.2 (8) Å30.25 × 0.21 × 0.20 mm
Z = 2

Data collection

Bruker SMART CCD area-detector diffractometer3352 independent reflections
Radiation source: fine-focus sealed tube2807 reflections with I > 2σ(I)
graphiteRint = 0.022
phi and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 2000)h = −9→5
Tmin = 0.759, Tmax = 0.800k = −22→20
7784 measured reflectionsl = −17→17

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 0.99w = 1/[σ2(Fo2) + (0.0573P)2 + 1.3432P] where P = (Fo2 + 2Fc2)/3
3352 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.51253 (5)−0.173135 (19)−0.13916 (3)0.04299 (16)
O10.3204 (3)−0.25040 (12)−0.18542 (17)0.0531 (6)
O20.3110 (3)−0.10340 (12)−0.22282 (18)0.0586 (6)
O30.7113 (3)−0.24740 (12)−0.09329 (17)0.0564 (6)
O40.6960 (3)−0.09862 (12)−0.12417 (19)0.0604 (6)
N10.5307 (4)−0.15375 (13)0.01154 (18)0.0414 (6)
C10.0211 (6)−0.0532 (3)−0.3578 (4)0.0995 (16)
H1A0.1015−0.0110−0.33230.149*
H1B−0.0934−0.0470−0.35270.149*
H1C−0.0177−0.0609−0.42880.149*
C20.1362 (5)−0.1177 (2)−0.2939 (3)0.0629 (9)
C30.0540 (5)−0.1850 (2)−0.3146 (3)0.0691 (11)
H3A−0.0755−0.1890−0.36840.083*
C40.1463 (5)−0.2471 (2)−0.2628 (3)0.0579 (9)
C50.0410 (7)−0.3181 (2)−0.2979 (4)0.0868 (14)
H5A0.1251−0.3558−0.25400.130*
H5B0.0066−0.3271−0.36810.130*
H5C−0.0757−0.3165−0.29420.130*
C60.9651 (7)−0.0436 (3)−0.1201 (4)0.1045 (17)
H6A0.8839−0.0022−0.13230.157*
H6B0.9885−0.0490−0.17630.157*
H6C1.0878−0.0374−0.05650.157*
C70.8632 (6)−0.1098 (2)−0.1128 (3)0.0648 (10)
C80.9518 (6)−0.1755 (2)−0.0957 (3)0.0747 (12)
H8A1.0737−0.1769−0.09010.090*
C90.8778 (5)−0.2392 (2)−0.0861 (3)0.0623 (10)
C100.9943 (7)−0.3073 (3)−0.0657 (4)0.0896 (14)
H10A0.9217−0.3470−0.06160.134*
H10B1.1167−0.3029−0.00150.134*
H10C1.0187−0.3154−0.12100.134*
C110.4967 (5)−0.20205 (18)0.0647 (2)0.0505 (8)
H11A0.4738−0.24920.04090.061*
C120.4930 (5)−0.18686 (17)0.1532 (2)0.0519 (8)
H12A0.4707−0.22350.18790.062*
C130.5224 (4)−0.11714 (16)0.1905 (2)0.0434 (7)
C140.5614 (5)−0.06650 (17)0.1356 (2)0.0514 (8)
H14A0.5842−0.01880.15730.062*
C150.5661 (5)−0.08703 (17)0.0498 (2)0.0513 (8)
H15A0.5959−0.05220.01570.062*
C160.5141 (5)−0.10005 (17)0.2825 (2)0.0488 (8)
H16A0.5061−0.13880.31920.059*
C170.5167 (5)−0.03530 (16)0.3193 (2)0.0451 (7)
H17A0.52610.00340.28300.054*
C180.5065 (4)−0.01843 (16)0.4102 (2)0.0420 (7)
C190.5343 (5)0.05182 (16)0.4469 (2)0.0501 (8)
H19A0.55770.08770.41150.060*
C200.4717 (5)−0.07005 (17)0.4662 (2)0.0505 (8)
H20A0.4522−0.11770.44440.061*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0456 (2)0.0468 (2)0.0388 (2)0.00112 (16)0.02331 (18)−0.00511 (16)
O10.0523 (14)0.0536 (13)0.0514 (13)−0.0059 (10)0.0252 (11)−0.0089 (10)
O20.0541 (15)0.0537 (14)0.0549 (14)0.0064 (11)0.0186 (12)−0.0004 (11)
O30.0531 (14)0.0571 (14)0.0565 (14)0.0087 (11)0.0263 (12)−0.0045 (11)
O40.0600 (15)0.0584 (14)0.0720 (16)−0.0050 (11)0.0405 (13)−0.0016 (12)
N10.0477 (15)0.0439 (14)0.0347 (13)0.0026 (11)0.0226 (11)−0.0037 (10)
C10.073 (3)0.101 (4)0.094 (4)0.027 (3)0.021 (3)0.024 (3)
C20.054 (2)0.080 (3)0.052 (2)0.0147 (19)0.0260 (18)0.0080 (18)
C30.045 (2)0.093 (3)0.055 (2)−0.006 (2)0.0155 (17)0.003 (2)
C40.055 (2)0.077 (2)0.049 (2)−0.0143 (18)0.0314 (18)−0.0138 (18)
C50.076 (3)0.094 (3)0.084 (3)−0.035 (2)0.037 (3)−0.021 (2)
C60.088 (3)0.118 (4)0.122 (4)−0.030 (3)0.065 (3)0.000 (3)
C70.059 (2)0.089 (3)0.053 (2)−0.012 (2)0.0331 (19)−0.0033 (19)
C80.050 (2)0.103 (3)0.078 (3)0.007 (2)0.038 (2)0.008 (2)
C90.053 (2)0.089 (3)0.0406 (18)0.019 (2)0.0211 (17)−0.0028 (18)
C100.077 (3)0.110 (4)0.084 (3)0.037 (3)0.043 (3)0.008 (3)
C110.064 (2)0.0442 (17)0.0515 (19)−0.0086 (15)0.0354 (17)−0.0137 (15)
C120.076 (2)0.0423 (17)0.052 (2)−0.0084 (15)0.0434 (19)−0.0021 (14)
C130.0547 (19)0.0422 (16)0.0375 (16)0.0041 (14)0.0269 (14)−0.0002 (13)
C140.083 (2)0.0383 (17)0.0457 (18)0.0030 (16)0.0419 (18)−0.0020 (13)
C150.076 (2)0.0444 (18)0.0431 (17)0.0049 (16)0.0371 (17)0.0047 (14)
C160.071 (2)0.0450 (18)0.0416 (17)0.0018 (15)0.0368 (16)0.0023 (13)
C170.061 (2)0.0444 (17)0.0392 (16)0.0014 (14)0.0329 (15)0.0028 (13)
C180.0495 (18)0.0436 (16)0.0356 (15)0.0021 (13)0.0239 (14)−0.0014 (13)
C190.075 (2)0.0424 (17)0.0457 (18)−0.0034 (15)0.0401 (17)0.0014 (13)
C200.074 (2)0.0399 (17)0.0471 (18)−0.0049 (15)0.0379 (17)−0.0075 (14)

Geometric parameters (Å, °)

Cu1—O21.939 (2)C7—C81.367 (5)
Cu1—O41.940 (2)C8—C91.363 (6)
Cu1—O31.940 (2)C8—H8A0.9300
Cu1—O11.947 (2)C9—C101.504 (5)
Cu1—N12.228 (2)C10—H10A0.9600
O1—C41.273 (4)C10—H10B0.9600
O2—C21.273 (4)C10—H10C0.9600
O3—C91.282 (4)C11—C121.378 (4)
O4—C71.269 (4)C11—H11A0.9300
N1—C111.320 (4)C12—C131.384 (4)
N1—C151.335 (4)C12—H12A0.9300
C1—C21.515 (5)C13—C141.389 (4)
C1—H1A0.9600C13—C161.456 (4)
C1—H1B0.9600C14—C151.368 (4)
C1—H1C0.9600C14—H14A0.9300
C2—C31.371 (5)C15—H15A0.9300
C3—C41.376 (5)C16—C171.321 (4)
C3—H3A0.9300C16—H16A0.9300
C4—C51.505 (5)C17—C181.448 (4)
C5—H5A0.9600C17—H17A0.9300
C5—H5B0.9600C18—C191.391 (4)
C5—H5C0.9600C18—C201.397 (4)
C6—C71.511 (6)C19—C20i1.376 (4)
C6—H6A0.9600C19—H19A0.9300
C6—H6B0.9600C20—C19i1.376 (4)
C6—H6C0.9600C20—H20A0.9300
O2—Cu1—O485.37 (10)O4—C7—C6114.9 (4)
O2—Cu1—O3163.25 (10)C8—C7—C6119.9 (4)
O4—Cu1—O392.29 (11)C9—C8—C7125.9 (4)
O2—Cu1—O191.51 (10)C9—C8—H8A117.0
O4—Cu1—O1166.93 (10)C7—C8—H8A117.0
O3—Cu1—O187.05 (10)O3—C9—C8125.4 (3)
O2—Cu1—N198.77 (10)O3—C9—C10114.7 (4)
O4—Cu1—N196.62 (10)C8—C9—C10119.9 (4)
O3—Cu1—N197.98 (9)C9—C10—H10A109.5
O1—Cu1—N196.40 (9)C9—C10—H10B109.5
C4—O1—Cu1125.2 (2)H10A—C10—H10B109.5
C2—O2—Cu1125.9 (2)C9—C10—H10C109.5
C9—O3—Cu1124.3 (2)H10A—C10—H10C109.5
C7—O4—Cu1124.9 (2)H10B—C10—H10C109.5
C11—N1—C15115.7 (3)N1—C11—C12124.1 (3)
C11—N1—Cu1125.5 (2)N1—C11—H11A118.0
C15—N1—Cu1118.6 (2)C12—C11—H11A118.0
C2—C1—H1A109.5C11—C12—C13120.1 (3)
C2—C1—H1B109.5C11—C12—H12A120.0
H1A—C1—H1B109.5C13—C12—H12A120.0
C2—C1—H1C109.5C12—C13—C14115.9 (3)
H1A—C1—H1C109.5C12—C13—C16120.6 (3)
H1B—C1—H1C109.5C14—C13—C16123.5 (3)
O2—C2—C3124.7 (3)C15—C14—C13119.8 (3)
O2—C2—C1114.2 (4)C15—C14—H14A120.1
C3—C2—C1121.1 (4)C13—C14—H14A120.1
C2—C3—C4125.7 (3)N1—C15—C14124.4 (3)
C2—C3—H3A117.1N1—C15—H15A117.8
C4—C3—H3A117.1C14—C15—H15A117.8
O1—C4—C3124.8 (3)C17—C16—C13126.8 (3)
O1—C4—C5115.3 (3)C17—C16—H16A116.6
C3—C4—C5119.9 (3)C13—C16—H16A116.6
C4—C5—H5A109.5C16—C17—C18126.7 (3)
C4—C5—H5B109.5C16—C17—H17A116.6
H5A—C5—H5B109.5C18—C17—H17A116.6
C4—C5—H5C109.5C19—C18—C20116.5 (3)
H5A—C5—H5C109.5C19—C18—C17120.3 (3)
H5B—C5—H5C109.5C20—C18—C17123.2 (3)
C7—C6—H6A109.5C20i—C19—C18122.2 (3)
C7—C6—H6B109.5C20i—C19—H19A118.9
H6A—C6—H6B109.5C18—C19—H19A118.9
C7—C6—H6C109.5C19i—C20—C18121.3 (3)
H6A—C6—H6C109.5C19i—C20—H20A119.3
H6B—C6—H6C109.5C18—C20—H20A119.3
O4—C7—C8125.2 (4)

Symmetry codes: (i) −x+1, −y, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C14—H14A···O2ii0.932.453.371 (4)173
C16—H16A···O1iii0.932.523.333 (4)147
C16—H16A···O3iii0.932.583.315 (4)136

Symmetry codes: (ii) −x+1, −y, −z; (iii) x, −y−1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2655).

References

  • Banfi, S., Carlucci, L., Caruso, E., Ciani, G. & Proserpio, D. M. (2002). J. Chem. Soc. Dalton Trans. pp. 2714–2721.
  • Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Coe, B. J., Harries, J. L., Harris, J. A., Brunschwig, B. S., Horton, P. N. & Hursthouse, M. B. (2006). Inorg. Chem. 45, 11019–11029. [PubMed]
  • Liu, P. P., Cheng, A. L., Yue, Q., Liu, N., Sun, W. W. & Gao, E. Q. (2008). Cryst. Growth Des. 8, 1668–1674.
  • Ma, Y., Cheng, A. L., Zhang, J. Y., Yue, Q. & Gao, E. Q. (2009). Cryst. Growth Des. 9, 867–873.
  • Niu, Y. Y., Hou, H. W., Wei, Y. L., Fan, Y. T., Zhu, Y., Du, C. X. & Xin, X. Q. (2001). Inorg. Chem. Commun. 4, 358–361.
  • Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography