PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): m1643–m1644.
Published online 2009 November 21. doi:  10.1107/S1600536809048284
PMCID: PMC2971846

Poly[[diaqua­(μ4-1H-benzimidazole-5,6-dicarboxyl­ato)strontium] monohydrate]

Abstract

Each of the carboxyl­ate –CO2 fragments of the dianion ligand in the title compound, {[Sr(C9H4N2O4)(H2O)2]·H2O}n, chelates to a SrII atom and at the same time, one of the two O atoms coordinates to a third SrII atom. The μ4-bridging mode of the dianion generates a square-grid layer motif; adjacent layers are connected by O—H(...)O, O—H(...)N and N—H(...)O hydrogen bonds, forming a three-dimensional network. The eight-coordinate Sr atom exists in a distorted square-anti­prismatic geometry. The crystal studied was a non-merohedral twin with a minor twin component of 24%.

Related literature

For the crystal structures of other metal salts of dicarboxylic acid, see: Gao et al. (2008 [triangle]); Lo et al. (2007 [triangle]); Song et al. (2009a [triangle],b [triangle]). For the treated of diffraction data of twinned crystals, see: Spek (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1643-scheme1.jpg

Experimental

Crystal data

  • [Sr(C9H4N2O4)(H2O)2]·H2O
  • M r = 345.81
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1643-efi1.jpg
  • a = 6.909 (1) Å
  • b = 7.093 (1) Å
  • c = 13.037 (2) Å
  • α = 80.860 (5)°
  • β = 83.974 (5)°
  • γ = 71.795 (4)°
  • V = 598.2 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 4.54 mm−1
  • T = 293 K
  • 0.31 × 0.24 × 0.20 mm

Data collection

  • Rigaku R-AXIS RAPID IP diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.334, T max = 0.464
  • 5799 measured reflections
  • 2695 independent reflections
  • 2339 reflections with I > 2σ(I)
  • R int = 0.075

Refinement

  • R[F 2 > 2σ(F 2)] = 0.076
  • wR(F 2) = 0.214
  • S = 1.05
  • 2695 reflections
  • 173 parameters
  • H-atom parameters constrained
  • Δρmax = 2.69 e Å−3
  • Δρmin = −2.12 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998 [triangle]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: OLEX (Dolomanov et al., 2003 [triangle]) and X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2009 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809048284/xu2672sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809048284/xu2672Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Guangdong Ocean University and the University of Malaya for supporting this study.

supplementary crystallographic information

Experimental

Strontium dichloride hexahydrate (0.027 g, 0.1 mmol), 1H-benzimidazole-5,6-dicarboxylic acid (0.021 g, 0.1 mmol) and water (15 ml) along with a few drops of sodium hydroxide solution that adjusted the pH to about 7 were placed in a 25 ml glass vessel, which was kept at 277 K for several weeks. Colorless block-shaped crystals were obtained in 60% yield.

Refinement

Carbon- and nitrogen bound H-atoms were generated geometrically, and were constrained to ride on their parent atoms (C–H = 0.93 Å, U = 1.5Ueq(C); N–H 0.88 Å, U = 1.2Ueq(N)).

For the two coordinated water molecules, their H-atoms rotated to fit the electron density. For the free water molecule, their H-atoms were placed in chemically sensible positions on the basis of hydrogen bonding interactions; O–H = 0.84 Å. Their temperature factors were similarly tied. The short intermolecular H3w2···H3w2 contact of < 2.0 Å may be an artifact of possible disorder in the O3w water molecule. However, it was not necessary, to split it into two components.

The structure is a non-merohedral twin; the diffraction intensities were split into two components by PLATON (Spek, 2009).

The final difference Fourier map had a large peak/deep hole in the vicinity of Sr1.

Figures

Fig. 1.
Thermal ellipsoid plot (Barbour, 2001) of a portion of the chain structure of Sr(H2O)2(C9H4N2O2).H2O at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
Fig. 2.
Detail of the geometry of Sr1.
Fig. 3.
OLEX (Dolomanov et al., 2003) depiction of the layer motif.

Crystal data

[Sr(C9H4N2O4)(H2O)2]·H2OZ = 2
Mr = 345.81F(000) = 344
Triclinic, P1Dx = 1.920 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.909 (1) ÅCell parameters from 5129 reflections
b = 7.093 (1) Åθ = 3.1–27.5°
c = 13.037 (2) ŵ = 4.54 mm1
α = 80.860 (5)°T = 293 K
β = 83.974 (5)°Block, colorless
γ = 71.795 (4)°0.31 × 0.24 × 0.20 mm
V = 598.2 (2) Å3

Data collection

Rigaku R-AXIS RAPID IP diffractometer2695 independent reflections
Radiation source: fine-focus sealed tube2339 reflections with I > 2σ(I)
graphiteRint = 0.075
ω scanθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)h = −8→8
Tmin = 0.334, Tmax = 0.464k = −9→9
5799 measured reflectionsl = −16→16

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.076Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.214H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.1352P)2 + 1.3937P] where P = (Fo2 + 2Fc2)/3
2695 reflections(Δ/σ)max = 0.001
173 parametersΔρmax = 2.69 e Å3
0 restraintsΔρmin = −2.12 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Sr10.25457 (8)0.25734 (8)0.46107 (4)0.0207 (3)
O10.4011 (8)0.3453 (8)0.6171 (5)0.0353 (13)
O20.1154 (7)0.5758 (7)0.5744 (4)0.0261 (10)
O30.3642 (7)0.8869 (7)0.5721 (4)0.0268 (10)
O40.0729 (8)1.0928 (8)0.6225 (5)0.0401 (14)
O1w0.2542 (8)0.5682 (8)0.3316 (4)0.0327 (12)
H110.35960.60020.33700.049*
H120.15020.66310.34430.049*
O2w0.2942 (10)0.0310 (10)0.3189 (6)0.0502 (17)
H210.30870.09530.26020.075*
H220.1896−0.00640.32130.075*
O3w0.3469 (12)0.0350 (11)1.0913 (6)0.0594 (19)
H3w10.31650.14851.05550.089*
H3w20.4687−0.02481.07400.089*
N10.2543 (11)0.4413 (11)1.0195 (5)0.0378 (16)
N20.1892 (12)0.7679 (11)1.0241 (5)0.0387 (16)
H2N0.16400.88301.04800.046*
C10.2549 (10)0.4986 (9)0.6338 (5)0.0198 (12)
C20.2500 (9)0.5836 (9)0.7336 (5)0.0192 (12)
C30.2665 (11)0.4524 (10)0.8249 (6)0.0254 (14)
H30.29160.31600.82390.031*
C40.2448 (11)0.5298 (11)0.9184 (6)0.0281 (15)
C50.2019 (11)0.7366 (11)0.9214 (6)0.0276 (14)
C60.1836 (11)0.8687 (10)0.8295 (6)0.0267 (14)
H60.15501.00550.83080.032*
C70.2086 (9)0.7926 (9)0.7361 (5)0.0190 (12)
C80.2165 (9)0.9307 (9)0.6363 (5)0.0216 (13)
C100.2225 (14)0.5909 (14)1.0781 (6)0.042 (2)
H100.22430.56921.15030.051*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Sr10.0175 (4)0.0190 (4)0.0219 (4)−0.0002 (2)−0.0012 (2)−0.0025 (3)
O10.027 (3)0.032 (3)0.042 (3)0.008 (2)−0.010 (2)−0.017 (2)
O20.022 (2)0.028 (2)0.026 (3)−0.0030 (18)−0.0043 (19)−0.007 (2)
O30.020 (2)0.026 (2)0.029 (3)−0.0029 (18)0.0065 (19)−0.002 (2)
O40.030 (3)0.026 (3)0.045 (3)0.011 (2)0.010 (2)0.005 (2)
O1w0.026 (3)0.030 (3)0.039 (3)−0.006 (2)0.004 (2)−0.004 (2)
O2w0.047 (4)0.051 (4)0.057 (4)−0.009 (3)−0.012 (3)−0.024 (3)
O3w0.066 (5)0.045 (4)0.066 (5)−0.016 (3)−0.013 (4)0.001 (4)
N10.049 (4)0.045 (4)0.020 (3)−0.018 (3)−0.005 (3)0.000 (3)
N20.055 (4)0.039 (4)0.024 (3)−0.011 (3)0.000 (3)−0.017 (3)
C10.018 (3)0.020 (3)0.022 (3)−0.004 (2)0.000 (2)−0.005 (2)
C20.014 (3)0.019 (3)0.022 (3)−0.001 (2)−0.002 (2)−0.005 (2)
C30.032 (4)0.020 (3)0.027 (4)−0.009 (2)−0.002 (3)−0.005 (3)
C40.035 (4)0.030 (4)0.021 (4)−0.012 (3)−0.005 (3)−0.001 (3)
C50.033 (4)0.027 (3)0.025 (4)−0.011 (3)−0.003 (3)−0.005 (3)
C60.034 (4)0.019 (3)0.026 (4)−0.007 (3)0.000 (3)−0.004 (3)
C70.020 (3)0.015 (3)0.021 (3)−0.004 (2)0.002 (2)−0.003 (2)
C80.016 (3)0.021 (3)0.025 (3)0.000 (2)−0.001 (2)−0.008 (3)
C100.049 (5)0.058 (5)0.018 (4)−0.013 (4)−0.006 (3)0.000 (3)

Geometric parameters (Å, °)

Sr1—O12.604 (5)O2w—H220.8400
Sr1—O22.760 (5)O3w—H3w10.8400
Sr1—O2i2.516 (5)O3w—H3w20.8400
Sr1—O3ii2.711 (5)N1—C101.354 (11)
Sr1—O3iii2.528 (5)N1—C41.366 (9)
Sr1—O4ii2.635 (6)N2—C101.302 (11)
Sr1—O1w2.554 (5)N2—C51.381 (9)
Sr1—O2w2.579 (6)N2—H2N0.8800
O1—C11.262 (8)C1—C21.511 (9)
O2—C11.233 (8)C2—C31.382 (10)
O2—Sr1i2.516 (5)C2—C71.424 (8)
O3—C81.242 (8)C3—C41.390 (10)
O3—Sr1iii2.528 (5)C3—H30.9300
O3—Sr1iv2.711 (5)C4—C51.409 (9)
O4—C81.264 (8)C5—C61.390 (10)
O4—Sr1iv2.635 (6)C6—C71.383 (9)
O1w—H110.8400C6—H60.9300
O1w—H120.8400C7—C81.506 (9)
O2w—H210.8400C10—H100.9300
O2i—Sr1—O3iii159.81 (17)Sr1—O1w—H12109.5
O2i—Sr1—O1w75.51 (17)H11—O1w—H12109.5
O3iii—Sr1—O1w90.53 (16)Sr1—O2w—H21109.5
O2i—Sr1—O2w90.93 (18)Sr1—O2w—H22109.5
O3iii—Sr1—O2w75.39 (19)H21—O2w—H22109.5
O1w—Sr1—O2w94.2 (2)H3w1—O3w—H3w2107.1
O2i—Sr1—O1118.96 (15)C10—N1—C4106.1 (7)
O3iii—Sr1—O177.00 (17)C10—N2—C5105.4 (7)
O1w—Sr1—O198.63 (19)C10—N2—H2N127.3
O2w—Sr1—O1149.54 (18)C5—N2—H2N127.3
O2i—Sr1—O4ii78.71 (17)O2—C1—O1122.9 (6)
O3iii—Sr1—O4ii118.75 (16)O2—C1—C2119.6 (6)
O1w—Sr1—O4ii148.09 (16)O1—C1—C2117.4 (6)
O2w—Sr1—O4ii104.7 (2)C3—C2—C7120.5 (6)
O1—Sr1—O4ii77.8 (2)C3—C2—C1117.0 (5)
O2i—Sr1—O3ii118.90 (16)C7—C2—C1122.2 (6)
O3iii—Sr1—O3ii73.35 (17)C2—C3—C4118.1 (6)
O1w—Sr1—O3ii163.41 (16)C2—C3—H3120.9
O2w—Sr1—O3ii78.2 (2)C4—C3—H3120.9
O1—Sr1—O3ii81.86 (17)N1—C4—C3132.1 (7)
O4ii—Sr1—O3ii48.37 (14)N1—C4—C5106.2 (6)
O2i—Sr1—O272.84 (17)C3—C4—C5121.7 (7)
O3iii—Sr1—O2117.87 (16)N2—C5—C6131.4 (7)
O1w—Sr1—O274.33 (16)N2—C5—C4108.4 (6)
O2w—Sr1—O2161.91 (19)C6—C5—C4120.1 (7)
O1—Sr1—O248.13 (14)C7—C6—C5118.6 (6)
O4ii—Sr1—O280.35 (17)C7—C6—H6120.7
O3ii—Sr1—O2116.38 (15)C5—C6—H6120.7
O1—Sr1—C8ii76.73 (18)C6—C7—C2121.0 (6)
C1—O1—Sr197.5 (4)C6—C7—C8118.7 (5)
C1—O2—Sr1i152.2 (5)C2—C7—C8119.9 (6)
C1—O2—Sr190.8 (4)O3—C8—O4122.0 (7)
Sr1i—O2—Sr1107.16 (17)O3—C8—C7120.0 (5)
C8—O3—Sr1iii148.1 (5)O4—C8—C7117.9 (6)
C8—O3—Sr1iv92.8 (4)N2—C10—N1113.9 (7)
Sr1iii—O3—Sr1iv106.65 (17)N2—C10—H10123.0
C8—O4—Sr1iv95.9 (4)N1—C10—H10123.0
Sr1—O1w—H11109.5
O2i—Sr1—O1—C1−13.7 (5)C1—C2—C3—C4−174.6 (6)
O3iii—Sr1—O1—C1153.0 (5)C10—N1—C4—C3179.6 (8)
O1w—Sr1—O1—C164.5 (5)C10—N1—C4—C5−1.3 (9)
O2w—Sr1—O1—C1178.4 (4)C2—C3—C4—N1−179.4 (8)
O4ii—Sr1—O1—C1−83.2 (4)C2—C3—C4—C51.6 (10)
O3ii—Sr1—O1—C1−132.3 (5)C10—N2—C5—C6−178.7 (9)
O2—Sr1—O1—C14.7 (4)C10—N2—C5—C40.0 (9)
O2i—Sr1—O2—C1158.5 (5)N1—C4—C5—N20.8 (9)
O3iii—Sr1—O2—C1−40.1 (4)C3—C4—C5—N2−180.0 (7)
O1w—Sr1—O2—C1−122.2 (4)N1—C4—C5—C6179.7 (7)
O2w—Sr1—O2—C1−174.5 (6)C3—C4—C5—C6−1.1 (11)
O1—Sr1—O2—C1−4.8 (4)N2—C5—C6—C7178.5 (8)
O4ii—Sr1—O2—C177.4 (4)C4—C5—C6—C7−0.1 (11)
O3ii—Sr1—O2—C144.2 (4)C5—C6—C7—C20.7 (10)
O2i—Sr1—O2—Sr1i0.0C5—C6—C7—C8−172.0 (6)
O3iii—Sr1—O2—Sr1i161.42 (17)C3—C2—C7—C6−0.2 (9)
O1w—Sr1—O2—Sr1i79.3 (2)C1—C2—C7—C6173.1 (6)
O2w—Sr1—O2—Sr1i27.0 (7)C3—C2—C7—C8172.4 (6)
O1—Sr1—O2—Sr1i−163.2 (3)C1—C2—C7—C8−14.3 (9)
O4ii—Sr1—O2—Sr1i−81.1 (2)Sr1iii—O3—C8—O4138.1 (7)
O3ii—Sr1—O2—Sr1i−114.29 (18)Sr1iv—O3—C8—O49.6 (7)
Sr1i—O2—C1—O1139.9 (8)Sr1iii—O3—C8—C7−39.6 (12)
Sr1—O2—C1—O18.8 (7)Sr1iv—O3—C8—C7−168.1 (5)
Sr1i—O2—C1—C2−37.6 (12)Sr1iv—O4—C8—O3−9.9 (7)
Sr1—O2—C1—C2−168.8 (5)Sr1iv—O4—C8—C7167.8 (5)
Sr1—O1—C1—O2−9.4 (8)C6—C7—C8—O3125.0 (7)
Sr1—O1—C1—C2168.3 (5)C2—C7—C8—O3−47.8 (9)
O2—C1—C2—C3125.8 (7)C6—C7—C8—O4−52.8 (9)
O1—C1—C2—C3−51.9 (9)C2—C7—C8—O4134.4 (7)
O2—C1—C2—C7−47.7 (9)C5—N2—C10—N1−0.9 (10)
O1—C1—C2—C7134.6 (7)C4—N1—C10—N21.4 (10)
C7—C2—C3—C4−0.9 (9)

Symmetry codes: (i) −x, −y+1, −z+1; (ii) x, y−1, z; (iii) −x+1, −y+1, −z+1; (iv) x, y+1, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1w—H11···O1iii0.841.982.81 (1)167
O1w—H12···O4v0.842.002.83 (1)173
O2w—H21···O3wvi0.842.282.95 (1)136
O2w—H22···O4i0.842.122.93 (1)162
O3w—H3w1···N10.841.972.78 (1)160
O3w—H3w2···O3wvii0.842.393.01 (2)132
N2—H2n···O3wiv0.882.072.75 (1)134

Symmetry codes: (iii) −x+1, −y+1, −z+1; (v) −x, −y+2, −z+1; (vi) x, y, z−1; (i) −x, −y+1, −z+1; (vii) −x+1, −y, −z+2; (iv) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2672).

References

  • Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.
  • Dolomanov, O. V., Blake, A. J., Champness, N. R. & Schröder, M. (2003). J. Appl. Cryst. 36, 1283–1284.
  • Gao, Q., Gao, W.-H., Zhang, C.-Y. & Xie, Y.-B. (2008). Acta Cryst. E64, m928. [PMC free article] [PubMed]
  • Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
  • Lo, Y.-L., Wang, W.-C., Lee, G.-A. & Liu, Y.-H. (2007). Acta Cryst. E63, m2657–m2658.
  • Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Song, W.-D., Wang, H., Li, S.-J., Qin, P.-W. & Hu, S.-W. (2009a). Acta Cryst. E65, m702. [PMC free article] [PubMed]
  • Song, W.-D., Wang, H., Qin, P.-W., Li, S.-J. & Hu, S.-W. (2009b). Acta Cryst. E65, m672. [PMC free article] [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Westrip, S. P. (2009). publCIF. In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography