PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): m1697.
Published online 2009 November 28. doi:  10.1107/S1600536809050223
PMCID: PMC2971843

trans-Bis(4,6-dimethyl­pyrimidine-2-thiol­ato-κ2 N,S)bis­(thio­urea-κS)nickel(II)

Abstract

In the title complex, [Ni(C6H7N2S)2(CH4N2S)2], the central Ni atom (located on a centre of inversion) is six-coordinated by two monoanionic N,S-chelating 4,6-dimethyl­pyrimidine-2-thiol­ate ligands and two trans S-coordinating thio­urea groups. The trans-N2S4 donor set defines a distorted octa­hedral geometry.

Related literature

For the significance of transition-metal complexes of heterocyclic thione ligands, see: Dilworth & Hu (1993 [triangle]); Figgis & Reynolds (1986 [triangle]); Zamudio-Rivera et al. (2005 [triangle]). For related structures, see: Rodríguez et al. (2007 [triangle]); Weininger et al. (1969 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1697-scheme1.jpg

Experimental

Crystal data

  • [Ni(C6H7N2S)2(CH4N2S)2]
  • M r = 489.35
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1697-efi1.jpg
  • a = 15.0306 (2) Å
  • b = 8.5783 (1) Å
  • c = 16.9274 (2) Å
  • V = 2182.57 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.29 mm−1
  • T = 296 K
  • 0.12 × 0.12 × 0.08 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997 [triangle]) T min = 0.861, T max = 0.901
  • 17226 measured reflections
  • 2495 independent reflections
  • 1542 reflections with I > 2σ(I)
  • R int = 0.061

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.101
  • S = 1.07
  • 2495 reflections
  • 126 parameters
  • H-atom parameters constrained
  • Δρmax = 0.27 e Å−3
  • Δρmin = −0.30 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT-Plus (Bruker, 1998 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809050223/tk2572sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809050223/tk2572Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This project was supported by the Program for New Century Excellent Talents in Universities of China (NCET-06–0556 and NCET-08–0618).

supplementary crystallographic information

Comment

There has been extensive interest in transition metal complexes of heterocyclic thione ligands, and their thiolate derivatives, due to the potential relevance of such compounds as models of active sites in metalloenzymes and their ability to adopt structures of variable nuclearity (Dilworth & Hu, 1993). Pyrimidine-2-thione (pymtH), a typical heterocyclic thione ligand, is a versatile sulfur donor ligand in terms of coordination modes (Zamudio-Rivera et al., 2005). In this paper, we report the synthesis and crystal structure of a mononuclear nickel(II) complex of 4,6-dimethylpyrimidine-2-thione (dmpymtH), namely trans-Ni(NH2CSNH2)2(dmpymt)2, (I).

In (I), Fig. 1, the nickel atom is located on a centre of inversion. The monoanionic dmpymt ligand functions as a chelating ligand through the S atom and one of the N atoms to form a four-membered NiSCN chelate ring. The Ni—S(dmpymt) and Ni—N bond lengths are 2.4798 (7) and 2.060 (2) Å, respectively. The N—Ni—S(dmpymt) chelate angle of 68.83 (6) ° is similar to those found in the other hexacoordinate metal complexes containing anionic heterocyclic thiolate N,S-chelate ligands (Rodríguez et al., 2007). The heterocyclic thiolate ligand is essentially planar with a maximum deviation of 0.009 (2) Å from the least-squares plane for atom N1. The thiourea ligand is terminally bound to the Ni atom via coordination of the S2 atom. The Ni—S(thiourea) bond length (2.4888 (8) Å) is similar to those in trans-NiCl2(NH2CSNH2)4 (2.470 (1) Å) (Figgis & Reynolds, 1986) and [Ni(NH2CSNH2)6]Br2 (2.506 (1) Å) (Weininger et al., 1969).

Experimental

Treatment of a mixture of dmpymt (28 mg, 0.20 mmol) and thiourea (16 mg, 0.20 mmol) in methanol (10 ml) with Ni(NO3)2.6H2O (30 mg, 0.10 mmol) in methanol (10 ml) gave a light-green solution. The homogeneous solution was stirred for 2 h at 60 °, and then filtered. Slow evaporation of the solvent gave a green solid, which was recrystallized from CH2Cl2/Et2O to give dark-green blocks of (I) Yield: 48 mg, ca. 46% (based on Ni). Anal. Calcd. for C14H22N8NiS4: C, 34.4; H, 4.53; N, 22.9%. Found: C, 34.2; H, 4.50; N, 22.3%.

Refinement

The N-bound H atoms were located in a difference map but refined with N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(N). The remaining H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.96 Å and with Uiso(H) = 1.2-1.5Ueq(C).

Figures

Fig. 1.
The structure of (I), showing the atom-numbering scheme and displacement ellipsoids at the 50% probability level. The Ni atom lies ona centre of inversion and unlabelled atoms are related by the symmetry operation 2-x, -y, 1-z.

Crystal data

[Ni(C6H7N2S)2(CH4N2S)2]F(000) = 1016
Mr = 489.35Dx = 1.489 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2124 reflections
a = 15.0306 (2) Åθ = 2.4–20.9°
b = 8.5783 (1) ŵ = 1.29 mm1
c = 16.9274 (2) ÅT = 296 K
V = 2182.57 (5) Å3Bar, green
Z = 40.12 × 0.12 × 0.08 mm

Data collection

Bruker SMART CCD area-detector diffractometer2495 independent reflections
Radiation source: fine-focus sealed tube1542 reflections with I > 2σ(I)
graphiteRint = 0.061
phi and ω scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1997)h = −12→19
Tmin = 0.861, Tmax = 0.901k = −11→11
17226 measured reflectionsl = −21→21

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.07w = 1/[σ2(Fo2) + (0.0412P)2] where P = (Fo2 + 2Fc2)/3
2495 reflections(Δ/σ)max = 0.001
126 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = −0.30 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni11.00000.00000.50000.03228 (16)
S11.01100 (5)0.11627 (9)0.36624 (4)0.0379 (2)
S20.99725 (5)0.28135 (9)0.53580 (5)0.0452 (2)
N10.87628 (14)0.0228 (2)0.44894 (13)0.0335 (5)
N20.83917 (16)0.1316 (3)0.32332 (13)0.0456 (6)
N30.92492 (18)0.2365 (3)0.67697 (14)0.0571 (8)
H3A0.90320.26940.72090.068*
H3B0.92670.13820.66720.068*
N40.9512 (2)0.4872 (3)0.64286 (17)0.0654 (8)
H4A0.92910.51620.68730.078*
H4B0.97070.55560.61000.078*
C10.89783 (18)0.0895 (3)0.37873 (16)0.0336 (6)
C20.7691 (2)−0.0829 (5)0.54075 (19)0.0657 (10)
H2A0.8090−0.16870.54910.099*
H2B0.7090−0.12070.53940.099*
H2C0.7754−0.00910.58300.099*
C30.7906 (2)−0.0057 (3)0.46408 (18)0.0428 (8)
C40.7263 (2)0.0366 (4)0.40970 (19)0.0575 (10)
H40.66640.01860.42000.069*
C50.7525 (2)0.1057 (4)0.34018 (18)0.0554 (9)
C60.6865 (2)0.1604 (5)0.2792 (2)0.0953 (15)
H6A0.71430.23560.24530.143*
H6B0.63640.20740.30520.143*
H6C0.66670.07310.24840.143*
C70.9555 (2)0.3363 (4)0.62490 (17)0.0416 (7)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.0289 (3)0.0400 (3)0.0280 (3)0.0001 (2)0.0017 (2)0.0070 (2)
S10.0374 (4)0.0437 (4)0.0327 (4)−0.0003 (4)0.0069 (3)0.0059 (3)
S20.0548 (5)0.0385 (4)0.0423 (5)−0.0011 (4)0.0081 (4)0.0016 (3)
N10.0282 (12)0.0417 (14)0.0304 (13)−0.0005 (11)0.0009 (10)0.0044 (11)
N20.0409 (15)0.0643 (18)0.0317 (13)0.0069 (13)−0.0066 (12)0.0038 (12)
N30.085 (2)0.0480 (16)0.0380 (15)−0.0051 (16)0.0154 (15)−0.0092 (13)
N40.087 (2)0.0444 (18)0.0643 (19)0.0023 (16)0.0046 (18)−0.0123 (14)
C10.0341 (16)0.0353 (16)0.0314 (15)0.0052 (13)−0.0019 (13)−0.0016 (13)
C20.044 (2)0.097 (3)0.056 (2)−0.014 (2)0.0104 (18)0.019 (2)
C30.0318 (17)0.059 (2)0.0375 (17)−0.0024 (15)0.0056 (14)0.0005 (15)
C40.0306 (18)0.092 (3)0.050 (2)0.0030 (18)−0.0033 (16)−0.0025 (19)
C50.040 (2)0.084 (3)0.0422 (18)0.0046 (19)−0.0097 (15)−0.0002 (18)
C60.055 (2)0.167 (4)0.064 (2)0.012 (3)−0.025 (2)0.024 (3)
C70.0420 (18)0.0407 (17)0.0421 (17)0.0009 (15)−0.0100 (15)−0.0058 (16)

Geometric parameters (Å, °)

Ni1—N1i2.060 (2)N4—C71.330 (3)
Ni1—N12.060 (2)N4—H4A0.8600
Ni1—S12.4798 (7)N4—H4B0.8600
Ni1—S1i2.4798 (7)C2—C31.493 (4)
Ni1—S22.4888 (8)C2—H2A0.9600
Ni1—S2i2.4888 (8)C2—H2B0.9600
S1—C11.729 (3)C2—H2C0.9600
S2—C71.700 (3)C3—C41.383 (4)
N1—C31.336 (3)C4—C51.375 (4)
N1—C11.358 (3)C4—H40.9300
N2—C11.337 (3)C5—C61.506 (4)
N2—C51.352 (4)C6—H6A0.9600
N3—C71.312 (4)C6—H6B0.9600
N3—H3A0.8600C6—H6C0.9600
N3—H3B0.8600
N1i—Ni1—N1180.0N2—C1—N1124.8 (2)
N1i—Ni1—S1111.17 (6)N2—C1—S1121.8 (2)
N1—Ni1—S168.83 (6)N1—C1—S1113.42 (19)
N1i—Ni1—S1i68.83 (6)C3—C2—H2A109.5
N1—Ni1—S1i111.17 (6)C3—C2—H2B109.5
S1—Ni1—S1i180.0H2A—C2—H2B109.5
N1i—Ni1—S290.28 (6)C3—C2—H2C109.5
N1—Ni1—S289.72 (6)H2A—C2—H2C109.5
S1—Ni1—S280.41 (3)H2B—C2—H2C109.5
S1i—Ni1—S299.59 (3)N1—C3—C4119.8 (3)
N1i—Ni1—S2i89.72 (6)N1—C3—C2117.2 (3)
N1—Ni1—S2i90.28 (6)C4—C3—C2123.0 (3)
S1—Ni1—S2i99.59 (3)C5—C4—C3118.9 (3)
S1i—Ni1—S2i80.41 (3)C5—C4—H4120.6
S2—Ni1—S2i180.0C3—C4—H4120.6
C1—S1—Ni176.66 (9)N2—C5—C4121.8 (3)
C7—S2—Ni1119.41 (11)N2—C5—C6116.0 (3)
C3—N1—C1118.3 (2)C4—C5—C6122.1 (3)
C3—N1—Ni1140.6 (2)C5—C6—H6A109.5
C1—N1—Ni1101.06 (16)C5—C6—H6B109.5
C1—N2—C5116.3 (3)H6A—C6—H6B109.5
C7—N3—H3A120.0C5—C6—H6C109.5
C7—N3—H3B120.0H6A—C6—H6C109.5
H3A—N3—H3B120.0H6B—C6—H6C109.5
C7—N4—H4A120.0N3—C7—N4117.7 (3)
C7—N4—H4B120.0N3—C7—S2123.0 (2)
H4A—N4—H4B120.0N4—C7—S2119.3 (2)

Symmetry codes: (i) −x+2, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2572).

References

  • Bruker (1998). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Dilworth, J. R. & Hu, J. (1993). Adv. Inorg. Chem. 40, 411–459.
  • Figgis, B. N. & Reynolds, P. A. (1986). J. Chem. Soc. Dalton Trans. pp. 125–130.
  • Rodríguez, A., Sousa-Pedrares, A., García-Vözquez, J. A., Romerro, J., Sousa, A. & Russo, U. (2007). Eur. J. Inorg. Chem. pp. 1444–1456.
  • Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Weininger, M. S., O’Connor, J. E. & Amma, E. L. (1969). Inorg. Chem. 8, 424–429.
  • Zamudio-Rivera, L. S., George-Tellez, R., López-Mendoza, G., Morales-Pacheco, A., Flores, H., Hupfl, H., Barba, V., Férnandez, F. J., Cabirol, N. & Beltran, H. (2005). Inorg. Chem. 44, 5370–5378. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography