PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): m1546–m1547.
Published online 2009 November 11. doi:  10.1107/S1600536809046479
PMCID: PMC2971841

(3-Allyl­oxypicolinato-κ2 N,O 2)bis­[3,5-difluoro-2-(2-pyrid­yl)phenyl-κ2C1,N]iridium(III)

Abstract

The title complex, [Ir(C11H6F2N)2(C9H8NO3)], consists of one IrIII ion, two C,N-bidentate 3,5-difluoro-2-(2-pyrid­yl)phenyl (F2ppy) ligands and one N,O-bidentate 3-allyl­oxypicolinate (pic-3-Oall) ligand. The IrIII ion is hexa­coordinated by two C atoms and two N atoms from the F2ppy ligands and one N atom and one carboxyl­ate O atom from the pic-3-Oall ligand, displaying a distorted octa­hedral geometry. In the crystal structure, weak inter­molecular C—H(...)F and C—H(...)O hydrogen bonds link the complex mol­ecules into a three-dimensional supra­molecular structure.

Related literature

For general background to phospho­rescent materials, see: Baldo et al. (1998 [triangle], 2000 [triangle]); Liang et al. (2006 [triangle]); Thompson (2007 [triangle]); Tsuboyama et al. (2003 [triangle]). For bond lengths in organic compounds, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1546-scheme1.jpg

Experimental

Crystal data

  • [Ir(C11H6F2N)2(C9H8NO3)]
  • M r = 750.70
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1546-efi1.jpg
  • a = 33.429 (4) Å
  • b = 9.9117 (12) Å
  • c = 16.0265 (19) Å
  • β = 94.107 (2)°
  • V = 5296.5 (11) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 5.11 mm−1
  • T = 185 K
  • 0.31 × 0.23 × 0.03 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.305, T max = 0.862
  • 14169 measured reflections
  • 5087 independent reflections
  • 4364 reflections with I > 2σ(I)
  • R int = 0.039

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031
  • wR(F 2) = 0.080
  • S = 1.05
  • 5087 reflections
  • 379 parameters
  • H-atom parameters constrained
  • Δρmax = 1.72 e Å−3
  • Δρmin = −0.59 e Å−3

Data collection: SMART (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]) and Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809046479/hy2251sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809046479/hy2251Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Natural Science Foundation of Gansu Province (096RJZA086) and the ‘Qing Lan’ Talent Engineering Funds (QL-05–23 A) of Lanzhou Jiaotong University.

supplementary crystallographic information

Comment

Since Forrest and co-workers (Baldo et al., 1998) successfully utilized the phosphorescent material PtOEP to fabricate light-emitting devices, many heavy-metal complexes have been extensively investigated in highly efficient electrophosphorescent organic light-emitting diodes (Baldo et al., 2000; Liang et al., 2006; Thompson, 2007). Among the complexes, the cyclometalated iridium complexes are the most valuable emitting materials due to the results in higher efficiency and brightness (Liang et al., 2006; Tsuboyama et al., 2003). Recently, we synthesized a mixed-ligand iridium complex, [Ir(F2ppy)2(pic-3-Oall)] (F2ppy = 3,5-difluoro-2-(2-pyridyl)phenyl; pic-3-Oall = 3-allyloxypicolinate), which exhibits bright blue light.

The molecular structure of the title complex is shown in Fig. 1. The mononuclear iridium(III) complex has an approximately octahedral coordination geometry. The IrIII ion is hexa-coordinated by two C atoms and two N atoms from two C,N-bidentate F2ppy ligands, which exhibit cis-C,C and trans-N,N chelate dispositions, and one N atom and one carboxylate O atom from one N,O-bidentate pic-3-Oall ligand. All the bond lengths and angles of the molecule are within normal ranges (Allen et al., 1987). For the F2ppy ligands, the Ir—C bonds [1.983 (4) and 2.002 (4) Å] are shorter than the Ir—N bonds [2.045 (4) and 2.051 (4) Å] (Table 1). Due to steric interactions, the difluorophenyl groups are not coplanar with the pyridine groups; the dihedral angles between the substituted phenyl rings and pyridines are 7.60 (1) and 6.05 (3)°, respectively. For the pic-3-Oall ligand, the bond lengths of Ir—N and Ir—O are 2.132 (3) and 2.135 (3) Å, respectively. In the crystal structure, the complex molecules are connected by weak intermolecular C—H···F and C—H···O hydrogen bonds (Table 2 and Fig. 2), forming a three-dimensional supramolecular structure.

Experimental

The title complex was prepared as following. First, a cyclometalated IrIII µ-chlorobridged dimer, [(C11H6F2N)2Ir(µ-Cl)]2, was synthesized by reacting IrCl3.nH2O (3.0 mmol) and 2-(2,4-difluorophenyl)pyridine (7.5 mmol). Then, the dimer (0.2 mmol) was reacted with 3-hydroxypicolinic acid (0.44 mmol) in 2-methoxyethanol (25 ml), affording bis[2-(2,4-difluorophenyl)pyridine](3-hydroxypicolinate)iridium(III), which (0.2 mmol) was reacted with 3-bromopropene (0.24 mmol) in the present of anhydrous K2CO3 (1 mmol) to give the title complex. Yellow plate single crystals of the complex were obtained by slow evaporation of the chloroform solution at room temperature.

Refinement

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.99 Å for methylene and 0.95 Å for other H atoms and with Uiso(H) = 1.2Ueq(C). The highest residual electron density was found 0.05 Å from Ir1 and the deepest hole 1.57 Å from C7.

Figures

Fig. 1.
The molecular structure of the title complex. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.
Fig. 2.
Intermolecular C—H···F and C—H···O hydrogen bonds in the title complex, viewed along the b axis. H atoms not involved in hydrogen bonds have been omitted for clarity. [Colour codes: pale-green ...

Crystal data

[Ir(C11H6F2N)2(C9H8NO3)]F(000) = 2912
Mr = 750.70Dx = 1.883 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 7056 reflections
a = 33.429 (4) Åθ = 2.4–25.8°
b = 9.9117 (12) ŵ = 5.11 mm1
c = 16.0265 (19) ÅT = 185 K
β = 94.107 (2)°Plate, yellow
V = 5296.5 (11) Å30.31 × 0.23 × 0.03 mm
Z = 8

Data collection

Bruker SMART APEX CCD diffractometer5087 independent reflections
Radiation source: sealed tube4364 reflections with I > 2σ(I)
graphiteRint = 0.039
[var phi] and ω scansθmax = 25.8°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −40→36
Tmin = 0.305, Tmax = 0.862k = −12→12
14169 measured reflectionsl = −11→19

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.0425P)2] where P = (Fo2 + 2Fc2)/3
5087 reflections(Δ/σ)max = 0.002
379 parametersΔρmax = 1.72 e Å3
0 restraintsΔρmin = −0.59 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ir10.365597 (4)0.187358 (14)0.693663 (9)0.03540 (8)
N10.32777 (11)0.0250 (3)0.6890 (2)0.0416 (8)
N20.39933 (11)0.3598 (4)0.7072 (2)0.0426 (8)
N30.38322 (11)0.1393 (3)0.5719 (2)0.0401 (8)
O10.41710 (9)0.0620 (3)0.71739 (17)0.0441 (7)
O20.45390 (11)−0.0942 (4)0.6590 (2)0.0706 (10)
O30.45584 (9)−0.0840 (3)0.4921 (2)0.0564 (8)
C10.33883 (15)−0.1008 (4)0.7107 (3)0.0485 (11)
H10.3663−0.11860.72590.058*
C20.31159 (19)−0.2054 (5)0.7119 (4)0.0617 (14)
H20.3203−0.29350.72800.074*
C30.2721 (2)−0.1808 (5)0.6897 (4)0.0640 (16)
H30.2531−0.25200.68970.077*
C40.25994 (15)−0.0520 (5)0.6672 (3)0.0585 (12)
H40.2324−0.03420.65210.070*
C50.28811 (13)0.0521 (4)0.6665 (3)0.0441 (10)
C60.28083 (15)0.1936 (4)0.6436 (3)0.0453 (11)
C70.31502 (13)0.2809 (4)0.6563 (3)0.0409 (10)
C80.30985 (14)0.4155 (4)0.6320 (3)0.0503 (11)
H80.33140.47760.64050.060*
C90.27359 (16)0.4575 (5)0.5961 (3)0.0582 (12)
C100.24033 (16)0.3774 (5)0.5840 (3)0.0613 (14)
H100.21560.41050.55920.074*
C110.24501 (13)0.2484 (5)0.6095 (3)0.0536 (12)
C120.41786 (14)0.4204 (4)0.6459 (3)0.0521 (11)
H120.41740.37700.59300.062*
C130.43741 (16)0.5417 (5)0.6554 (4)0.0663 (14)
H130.44940.58240.60970.080*
C140.43921 (18)0.6028 (5)0.7324 (4)0.0722 (16)
H140.45270.68650.74090.087*
C150.42135 (16)0.5422 (5)0.7969 (3)0.0639 (14)
H150.42290.58340.85050.077*
C160.40075 (13)0.4197 (4)0.7843 (3)0.0458 (10)
C170.37829 (14)0.3462 (4)0.8450 (3)0.0446 (10)
C180.35732 (12)0.2308 (4)0.8132 (3)0.0378 (9)
C190.33531 (14)0.1565 (4)0.8687 (3)0.0434 (10)
H190.31990.08080.84920.052*
C200.33618 (17)0.1936 (4)0.9511 (3)0.0525 (13)
C210.35735 (19)0.3014 (5)0.9836 (4)0.0683 (16)
H210.35830.32251.04160.082*
C220.37700 (17)0.3773 (5)0.9289 (3)0.0649 (14)
C230.43021 (13)−0.0015 (4)0.6533 (3)0.0446 (10)
C240.41319 (12)0.0496 (4)0.5690 (3)0.0383 (9)
C250.42684 (13)0.0104 (4)0.4908 (3)0.0437 (10)
C260.41040 (14)0.0726 (5)0.4191 (3)0.0542 (12)
H260.42010.05180.36630.065*
C270.38003 (17)0.1647 (5)0.4247 (3)0.0535 (13)
H270.36820.20630.37560.064*
C280.36687 (15)0.1963 (4)0.5008 (3)0.0458 (11)
H280.34570.25980.50400.055*
C290.46854 (15)−0.1295 (6)0.4130 (3)0.0619 (13)
H29A0.4832−0.05680.38580.074*
H29B0.4450−0.15550.37540.074*
C300.49507 (17)−0.2473 (7)0.4297 (5)0.0751 (17)
H300.5047−0.29110.38240.090*
C310.5065 (2)−0.2967 (5)0.5026 (5)0.080 (2)
H31A0.4976−0.25650.55180.097*
H31B0.5237−0.37310.50670.097*
F10.27033 (10)0.5876 (3)0.5693 (2)0.0866 (10)
F20.21199 (9)0.1647 (3)0.5980 (2)0.0759 (9)
F30.31653 (10)0.1165 (3)1.00528 (17)0.0748 (9)
F40.39817 (14)0.4857 (3)0.9610 (2)0.1073 (14)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ir10.03972 (12)0.03992 (11)0.02690 (11)−0.00128 (6)0.00483 (8)−0.00145 (6)
N10.051 (2)0.0460 (19)0.0293 (19)−0.0108 (16)0.0137 (16)−0.0091 (15)
N20.045 (2)0.0455 (18)0.038 (2)−0.0053 (17)0.0091 (17)0.0043 (17)
N30.047 (2)0.0424 (17)0.0316 (19)0.0009 (16)0.0072 (16)−0.0010 (16)
O10.0496 (17)0.0548 (16)0.0270 (15)0.0049 (14)−0.0033 (13)0.0029 (14)
O20.085 (3)0.074 (2)0.053 (2)0.038 (2)0.0088 (19)0.0119 (18)
O30.0536 (19)0.0692 (19)0.0477 (19)0.0164 (16)0.0118 (16)−0.0069 (16)
C10.064 (3)0.049 (2)0.034 (2)−0.008 (2)0.009 (2)−0.0010 (19)
C20.087 (4)0.055 (3)0.045 (3)−0.016 (3)0.013 (3)−0.004 (2)
C30.078 (4)0.065 (3)0.051 (3)−0.026 (3)0.019 (3)−0.009 (2)
C40.053 (3)0.074 (3)0.049 (3)−0.019 (3)0.009 (2)−0.010 (3)
C50.046 (2)0.058 (2)0.030 (2)−0.010 (2)0.0149 (19)−0.009 (2)
C60.042 (3)0.061 (3)0.034 (3)0.002 (2)0.008 (2)−0.012 (2)
C70.045 (2)0.051 (2)0.028 (2)0.0021 (19)0.0061 (19)−0.0085 (18)
C80.050 (3)0.053 (2)0.048 (3)0.005 (2)0.004 (2)−0.009 (2)
C90.065 (3)0.055 (3)0.055 (3)0.018 (2)0.004 (3)−0.011 (2)
C100.055 (3)0.076 (3)0.052 (3)0.024 (3)0.002 (2)−0.016 (3)
C110.040 (3)0.074 (3)0.047 (3)0.003 (2)0.008 (2)−0.015 (3)
C120.057 (3)0.057 (3)0.044 (3)−0.010 (2)0.015 (2)0.008 (2)
C130.074 (4)0.067 (3)0.060 (3)−0.021 (3)0.016 (3)0.013 (3)
C140.082 (4)0.054 (3)0.082 (4)−0.025 (3)0.011 (3)0.003 (3)
C150.082 (4)0.052 (3)0.058 (3)−0.022 (3)0.010 (3)−0.006 (2)
C160.055 (3)0.042 (2)0.040 (2)−0.003 (2)0.003 (2)−0.0020 (19)
C170.056 (3)0.045 (2)0.034 (2)−0.005 (2)0.008 (2)−0.0061 (19)
C180.042 (2)0.0404 (19)0.031 (2)0.0027 (18)0.0018 (18)−0.0042 (18)
C190.050 (3)0.049 (2)0.032 (2)−0.006 (2)0.011 (2)−0.0047 (19)
C200.067 (3)0.055 (3)0.038 (3)−0.007 (2)0.020 (3)−0.003 (2)
C210.089 (4)0.077 (4)0.041 (3)−0.016 (3)0.019 (3)−0.013 (3)
C220.097 (4)0.055 (3)0.044 (3)−0.022 (3)0.012 (3)−0.020 (2)
C230.047 (3)0.048 (2)0.040 (3)0.003 (2)0.011 (2)0.002 (2)
C240.042 (2)0.0396 (19)0.034 (2)−0.0034 (18)0.0066 (18)−0.0004 (18)
C250.041 (2)0.048 (2)0.042 (3)−0.0038 (19)0.010 (2)−0.005 (2)
C260.057 (3)0.068 (3)0.039 (3)−0.006 (2)0.013 (2)−0.006 (2)
C270.062 (3)0.071 (3)0.027 (2)0.007 (2)0.000 (2)0.003 (2)
C280.053 (3)0.052 (2)0.033 (2)0.0068 (19)0.004 (2)−0.0005 (19)
C290.058 (3)0.077 (3)0.053 (3)0.008 (3)0.015 (3)−0.021 (3)
C300.059 (3)0.081 (4)0.087 (5)0.011 (3)0.017 (3)−0.022 (4)
C310.071 (4)0.063 (3)0.110 (6)0.009 (3)0.025 (4)0.000 (3)
F10.090 (2)0.0581 (16)0.109 (3)0.0262 (16)−0.015 (2)−0.0043 (17)
F20.0428 (16)0.101 (2)0.082 (3)−0.0054 (15)−0.0077 (16)−0.0100 (18)
F30.100 (2)0.087 (2)0.0399 (16)−0.0301 (18)0.0257 (16)−0.0026 (15)
F40.177 (4)0.092 (2)0.055 (2)−0.071 (2)0.024 (2)−0.0337 (18)

Geometric parameters (Å, °)

Ir1—C71.983 (4)C12—C131.371 (6)
Ir1—C182.002 (4)C12—H120.9500
Ir1—N12.045 (3)C13—C141.373 (8)
Ir1—N22.051 (4)C13—H130.9500
Ir1—N32.132 (3)C14—C151.368 (7)
Ir1—O12.135 (3)C14—H140.9500
N1—C11.339 (5)C15—C161.404 (6)
N1—C51.375 (6)C15—H150.9500
N2—C121.341 (5)C16—C171.465 (6)
N2—C161.367 (6)C17—C221.384 (6)
N3—C241.343 (5)C17—C181.417 (6)
N3—C281.352 (6)C18—C191.404 (6)
O1—C231.307 (5)C19—C201.369 (7)
O2—C231.212 (5)C19—H190.9500
O3—C251.346 (5)C20—F31.361 (5)
O3—C291.438 (6)C20—C211.365 (7)
C1—C21.381 (7)C21—C221.359 (7)
C1—H10.9500C21—H210.9500
C2—C31.364 (9)C22—F41.367 (5)
C2—H20.9500C23—C241.514 (6)
C3—C41.380 (7)C24—C251.419 (6)
C3—H30.9500C25—C261.383 (6)
C4—C51.398 (6)C26—C271.373 (7)
C4—H40.9500C26—H260.9500
C5—C61.465 (6)C27—C281.362 (7)
C6—C111.391 (7)C27—H270.9500
C6—C71.436 (6)C28—H280.9500
C7—C81.397 (6)C29—C301.479 (8)
C8—C91.369 (7)C29—H29A0.9900
C8—H80.9500C29—H29B0.9900
C9—F11.360 (5)C30—C311.299 (10)
C9—C101.369 (7)C30—H300.9500
C10—C111.349 (8)C31—H31A0.9500
C10—H100.9500C31—H31B0.9500
C11—F21.382 (5)
C7—Ir1—C1890.86 (17)C13—C12—H12118.2
C7—Ir1—N181.10 (16)C12—C13—C14118.5 (5)
C18—Ir1—N194.43 (15)C12—C13—H13120.7
C7—Ir1—N295.32 (15)C14—C13—H13120.7
C18—Ir1—N280.32 (16)C15—C14—C13119.4 (5)
N1—Ir1—N2173.64 (13)C15—C14—H14120.3
C7—Ir1—N396.53 (15)C13—C14—H14120.3
C18—Ir1—N3171.88 (15)C14—C15—C16120.5 (5)
N1—Ir1—N390.06 (13)C14—C15—H15119.7
N2—Ir1—N395.59 (14)C16—C15—H15119.7
C7—Ir1—O1170.11 (14)N2—C16—C15119.3 (4)
C18—Ir1—O196.88 (14)N2—C16—C17113.4 (3)
N1—Ir1—O192.13 (13)C15—C16—C17127.2 (4)
N2—Ir1—O192.06 (13)C22—C17—C18118.7 (4)
N3—Ir1—O176.16 (12)C22—C17—C16126.0 (4)
C1—N1—C5119.6 (4)C18—C17—C16115.2 (4)
C1—N1—Ir1124.4 (3)C19—C18—C17117.6 (4)
C5—N1—Ir1116.0 (3)C19—C18—Ir1127.5 (3)
C12—N2—C16118.7 (4)C17—C18—Ir1114.8 (3)
C12—N2—Ir1125.1 (3)C20—C19—C18119.7 (4)
C16—N2—Ir1116.1 (3)C20—C19—H19120.2
C24—N3—C28120.4 (4)C18—C19—H19120.2
C24—N3—Ir1115.8 (3)F3—C20—C21117.2 (5)
C28—N3—Ir1123.8 (3)F3—C20—C19119.1 (4)
C23—O1—Ir1116.9 (3)C21—C20—C19123.6 (5)
C25—O3—C29117.5 (4)C22—C21—C20116.6 (5)
N1—C1—C2122.2 (5)C22—C21—H21121.7
N1—C1—H1118.9C20—C21—H21121.7
C2—C1—H1118.9C21—C22—F4117.0 (5)
C3—C2—C1119.3 (5)C21—C22—C17123.7 (4)
C3—C2—H2120.4F4—C22—C17119.3 (5)
C1—C2—H2120.4O2—C23—O1124.1 (4)
C2—C3—C4119.7 (5)O2—C23—C24121.4 (4)
C2—C3—H3120.2O1—C23—C24114.5 (4)
C4—C3—H3120.2N3—C24—C25120.0 (4)
C3—C4—C5119.9 (5)N3—C24—C23115.1 (4)
C3—C4—H4120.0C25—C24—C23124.9 (4)
C5—C4—H4120.0O3—C25—C26124.4 (4)
N1—C5—C4119.4 (4)O3—C25—C24117.0 (4)
N1—C5—C6113.1 (4)C26—C25—C24118.6 (4)
C4—C5—C6127.5 (4)C27—C26—C25119.6 (4)
C11—C6—C7118.3 (4)C27—C26—H26120.2
C11—C6—C5126.5 (4)C25—C26—H26120.2
C7—C6—C5115.2 (4)C28—C27—C26120.0 (5)
C8—C7—C6117.0 (4)C28—C27—H27120.0
C8—C7—Ir1128.1 (3)C26—C27—H27120.0
C6—C7—Ir1114.4 (3)N3—C28—C27121.4 (4)
C9—C8—C7119.8 (4)N3—C28—H28119.3
C9—C8—H8120.1C27—C28—H28119.3
C7—C8—H8120.1O3—C29—C30107.4 (5)
F1—C9—C8118.0 (5)O3—C29—H29A110.2
F1—C9—C10117.3 (4)C30—C29—H29A110.2
C8—C9—C10124.6 (5)O3—C29—H29B110.2
C11—C10—C9115.6 (4)C30—C29—H29B110.2
C11—C10—H10122.2H29A—C29—H29B108.5
C9—C10—H10122.2C31—C30—C29126.5 (6)
C10—C11—F2117.0 (4)C31—C30—H30116.7
C10—C11—C6124.6 (5)C29—C30—H30116.7
F2—C11—C6118.4 (5)C30—C31—H31A120.0
N2—C12—C13123.5 (5)C30—C31—H31B120.0
N2—C12—H12118.2H31A—C31—H31B120.0

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C3—H3···F1i0.952.602.997 (6)106
C28—H28···F2ii0.952.553.280 (6)134
C10—H10···F3iii0.952.503.299 (6)142
C12—H12···F4iv0.952.563.130 (6)119
C26—H26···O1v0.952.633.519 (5)155
C14—H14···O2vi0.952.543.275 (6)134

Symmetry codes: (i) x, y−1, z; (ii) −x+1/2, −y+1/2, −z+1; (iii) −x+1/2, y+1/2, −z+3/2; (iv) x, −y+1, z−1/2; (v) x, −y, z−1/2; (vi) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2251).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Baldo, M. A., O’Brien, D. F., You, Y., Shoustikov, A., Sibley, S., Thompson, M. E. & Forrest, S. R. (1998). Nature (London), 395, 151–154.
  • Baldo, M. A., Thompson, M. E. & Forrest, S. R. (2000). Nature (London), 403, 750–753. [PubMed]
  • Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Liang, B., Jiang, C. Y., Chen, Z., Zhang, X. J., Shi, H. H. & Cao, Y. (2006). J. Mater. Chem. 16, 1281–1286.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  • Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Thompson, M. (2007). MRS Bull 32, 694–701.
  • Tsuboyama, A., Iwawaki, H., Furugori, M., Mukaide, T., Kamatani, J., Igawa, S., Moriyama, T., Miura, S., Takiguchi, T., Okada, S., Hoshino, M. & Ueno, K. (2003). J. Am. Chem. Soc. 125, 12971–12979. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography