PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): m1642.
Published online 2009 November 21. doi:  10.1107/S1600536809049277
PMCID: PMC2971838

(Formato-κ2 O,O′)bis­(1,10-phenanthroline-κ2 N,N′)manganese(II) perchlorate

Abstract

In the title complex, [Mn(CHO2)(C12H8N2)2]ClO4, the MnII cation is chelated by two 1,10-phenanthroline (phen) ligands and one formate anion in a distorted MnN4O2 octa­hedral geometry. The two phen planes are oriented at a dihedral angle of 57.48 (11)°. The perchlorate anion links with the Mn complex cation via weak C—H(...)O hydrogen bonding.

Related literature

For general background to manganese(II)–phen complexes and related structures, see: Zhu et al. (2008 [triangle]); Hao et al. (2008 [triangle]); Zhang (2004 [triangle]); Xu & Xu (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1642-scheme1.jpg

Experimental

Crystal data

  • [Mn(CHO2)(C12H8N2)2]ClO4
  • M r = 559.82
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1642-efi1.jpg
  • a = 13.0752 (10) Å
  • b = 10.9532 (9) Å
  • c = 17.4811 (14) Å
  • β = 111.4950 (10)°
  • V = 2329.4 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.73 mm−1
  • T = 293 K
  • 0.30 × 0.25 × 0.16 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.803, T max = 0.889
  • 22324 measured reflections
  • 5752 independent reflections
  • 4237 reflections with I > 2σ(I)
  • R int = 0.057

Refinement

  • R[F 2 > 2σ(F 2)] = 0.079
  • wR(F 2) = 0.176
  • S = 1.07
  • 5752 reflections
  • 334 parameters
  • 2 restraints
  • H-atom parameters constrained
  • Δρmax = 0.88 e Å−3
  • Δρmin = −0.65 e Å−3

Data collection: SMART (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809049277/xu2641sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809049277/xu2641Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported financially by the National Natural Science Foundation of China (20773104), the Program for New Century Excellent Talents in China’s Universities (NCET-06–0891), the Key Project of the Ministry of Education of China (208143), the Important Project of Hubei Provincial Education Office (Z20091301) and the Natural Science Foundation of Hubei Provinces of China (2008CDB030).

supplementary crystallographic information

Comment

1,10-Phenanthroline (phen), which is the parent of an important class of chelating agents, has been widely used in the construction of supramolecular architectures. Some manganese(II)-phen complexes have been synthesized and reported (Zhu et al.,2008; Hao et al., 2008; Zhang et al., 2004; Xu et al., 2005). As a continuation of these studies, we herein report the crystal structure of the title complex (I).

As illustrated in Fig. 1, MnII ion is in a distorted octahedral geometry formed by two phen ligands and one HCOO- anion (Table 1). The dihedral angle of two phen ligands of the complex is 57.48 (11)°. In the crystal structure the weak C—H···O hydrogen bonding links the complex into a one-dimensional chains (Fig. 2). The C2—H2···O1i (symmetry code: i -x,-y + 2,-z) hydrogen bond provides additional attractive forces between adjacent chains (Table 2). Furthermore aromatic π-π stacking between N2-pyridine and C18ii-benzene rings [symmetry code: (ii) x, 3/2-y, 1/2+z; centroids distance = 3.656 (3) Å] helps to form the two-dimensional supramolecular motif (Fig. 3).

Experimental

Mn(ClO4)2.6H2O (0.0331 g, 0.1 mmol), phen (0.0198 g, 0.1 mmol), formic acid (2 ml) and water (10 ml) were placed in a 25 ml Teflon-lined stainless steel reactor and heated at 393 K for three days, and then cooled slowly to room temperature. Single crystals were obtained from the reaction mixture.

Refinement

All H atoms were positioned geometrically (C—H = 0.93 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The structure of (I) with the atom-numbering scheme showing displacement ellipsoids at the 30% probability level.
Fig. 2.
One-dimensional chain connected by C—H···O hydrogen bonds.
Fig. 3.
Supramolecular network formed by hydrogen-bonding and π-π stacking.

Crystal data

[Mn(CHO2)(C12H8N2)2]ClO4F(000) = 1140
Mr = 559.82Dx = 1.596 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5752 reflections
a = 13.0752 (10) Åθ = 2.2–28.3°
b = 10.9532 (9) ŵ = 0.73 mm1
c = 17.4811 (14) ÅT = 293 K
β = 111.495 (1)°Prism, pink
V = 2329.4 (3) Å30.30 × 0.25 × 0.16 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer5752 independent reflections
Radiation source: fine-focus sealed tube4237 reflections with I > 2σ(I)
graphiteRint = 0.057
[var phi] and ω scansθmax = 28.3°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −17→12
Tmin = 0.803, Tmax = 0.889k = −14→14
22324 measured reflectionsl = −23→23

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.079Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.176H-atom parameters constrained
S = 1.07w = 1/[σ2(Fo2) + (0.0272P)2 + 7.2414P] where P = (Fo2 + 2Fc2)/3
5752 reflections(Δ/σ)max = 0.002
334 parametersΔρmax = 0.88 e Å3
2 restraintsΔρmin = −0.65 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Mn10.28574 (5)0.75685 (6)0.09973 (4)0.03794 (18)
C120.1291 (4)0.7365 (4)0.1859 (3)0.0485 (11)
N30.4324 (3)0.7221 (3)0.0732 (2)0.0513 (10)
N40.2276 (3)0.6351 (4)−0.0041 (2)0.0529 (10)
C70.2343 (4)0.6349 (4)0.3166 (3)0.0496 (11)
C230.3015 (4)0.6173 (4)−0.0406 (3)0.0493 (11)
C110.2290 (4)0.6786 (4)0.2398 (3)0.0442 (10)
N20.3142 (3)0.6696 (4)0.2139 (2)0.0507 (10)
N10.1283 (3)0.7782 (4)0.1127 (2)0.0530 (10)
C240.4105 (4)0.6658 (4)−0.0005 (3)0.0486 (11)
C60.1396 (5)0.6481 (5)0.3396 (3)0.0595 (13)
H60.14200.61680.38970.071*
C160.4886 (5)0.6533 (5)−0.0370 (3)0.0582 (13)
C100.4052 (4)0.6172 (5)0.2638 (3)0.0610 (14)
H100.46410.60980.24630.073*
C80.3318 (5)0.5804 (5)0.3676 (3)0.0632 (14)
H80.33830.55010.41890.076*
C40.0416 (4)0.7523 (5)0.2128 (3)0.0540 (12)
C3−0.0515 (4)0.8147 (6)0.1588 (4)0.0683 (15)
H3−0.11170.82820.17390.082*
C2−0.0533 (5)0.8549 (6)0.0853 (4)0.0741 (17)
H2−0.11450.89570.04950.089*
C50.0484 (5)0.7044 (5)0.2905 (3)0.0617 (14)
H5−0.01120.71240.30710.074*
C190.2753 (5)0.5548 (5)−0.1155 (3)0.0603 (14)
C150.5929 (5)0.7011 (5)0.0048 (4)0.0753 (18)
H150.64670.6964−0.01820.090*
C130.5328 (5)0.7650 (5)0.1118 (4)0.0645 (14)
H130.54870.80340.16230.077*
C220.1285 (5)0.5872 (5)−0.0392 (4)0.0679 (15)
H220.07780.5983−0.01390.082*
C90.4173 (5)0.5725 (5)0.3409 (3)0.0673 (15)
H90.48330.53740.37420.081*
C170.4584 (6)0.5935 (5)−0.1153 (4)0.0717 (17)
H170.50930.5873−0.14090.086*
C10.0378 (5)0.8345 (6)0.0640 (3)0.0686 (16)
H10.03530.86160.01300.082*
C200.1692 (6)0.5062 (5)−0.1501 (4)0.0750 (18)
H200.14850.4633−0.19940.090*
C180.3560 (6)0.5459 (5)−0.1523 (3)0.0735 (18)
H180.33810.5067−0.20280.088*
C140.6158 (5)0.7550 (6)0.0797 (4)0.0763 (17)
H140.68600.78460.10900.092*
C210.0962 (6)0.5213 (6)−0.1121 (4)0.0781 (18)
H210.02600.4881−0.13440.094*
Cl1−0.21638 (13)0.81668 (17)0.34147 (10)0.0761 (5)
O20.3515 (3)0.9326 (3)0.1610 (2)0.0695 (10)
O10.2508 (3)0.9390 (4)0.0303 (2)0.0709 (11)
C250.3023 (5)0.9903 (5)0.0963 (3)0.0607 (13)
H25A0.30471.07520.09770.073*
O6−0.3243 (5)0.8154 (9)0.3342 (5)0.193 (4)
O3−0.1958 (7)0.8782 (9)0.2849 (6)0.243 (6)
O4−0.1710 (10)0.7089 (8)0.3465 (11)0.341 (10)
O5−0.1664 (12)0.856 (2)0.4119 (7)0.436 (12)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Mn10.0414 (4)0.0420 (3)0.0373 (3)0.0022 (3)0.0225 (3)−0.0034 (3)
C120.048 (3)0.048 (3)0.049 (2)−0.006 (2)0.018 (2)−0.008 (2)
N30.054 (3)0.044 (2)0.059 (2)0.0012 (18)0.023 (2)−0.0032 (18)
N40.055 (3)0.053 (2)0.053 (2)−0.003 (2)0.022 (2)−0.0008 (19)
C70.058 (3)0.042 (2)0.048 (2)−0.002 (2)0.020 (2)−0.002 (2)
C230.066 (3)0.039 (2)0.048 (2)0.005 (2)0.027 (2)0.0051 (19)
C110.050 (3)0.040 (2)0.044 (2)−0.004 (2)0.019 (2)−0.0073 (18)
N20.046 (2)0.052 (2)0.055 (2)0.0070 (19)0.0199 (19)−0.0019 (19)
N10.051 (2)0.060 (3)0.047 (2)0.0073 (19)0.0167 (19)0.0043 (18)
C240.064 (3)0.039 (2)0.051 (3)0.008 (2)0.030 (2)0.006 (2)
C60.070 (4)0.061 (3)0.053 (3)−0.009 (3)0.029 (3)−0.001 (2)
C160.071 (4)0.046 (3)0.072 (3)0.011 (3)0.043 (3)0.012 (2)
C100.051 (3)0.059 (3)0.072 (3)0.012 (3)0.022 (3)−0.004 (3)
C80.075 (4)0.055 (3)0.054 (3)0.007 (3)0.017 (3)0.005 (2)
C40.045 (3)0.059 (3)0.060 (3)−0.003 (2)0.021 (2)−0.010 (2)
C30.045 (3)0.084 (4)0.074 (4)0.003 (3)0.019 (3)−0.013 (3)
C20.051 (3)0.092 (5)0.068 (4)0.022 (3)0.010 (3)0.001 (3)
C50.057 (3)0.073 (4)0.065 (3)−0.009 (3)0.034 (3)−0.009 (3)
C190.086 (4)0.046 (3)0.049 (3)0.010 (3)0.024 (3)0.001 (2)
C150.074 (4)0.060 (3)0.113 (5)0.011 (3)0.060 (4)0.015 (4)
C130.056 (3)0.057 (3)0.078 (4)−0.004 (3)0.023 (3)−0.007 (3)
C220.062 (4)0.064 (3)0.076 (4)−0.010 (3)0.023 (3)−0.009 (3)
C90.061 (4)0.066 (3)0.063 (3)0.019 (3)0.009 (3)0.009 (3)
C170.102 (5)0.063 (3)0.072 (4)0.016 (3)0.058 (4)0.010 (3)
C10.065 (4)0.083 (4)0.054 (3)0.019 (3)0.017 (3)0.011 (3)
C200.098 (5)0.054 (3)0.058 (3)−0.005 (3)0.012 (3)−0.013 (3)
C180.120 (6)0.057 (3)0.054 (3)0.021 (4)0.045 (4)0.006 (3)
C140.054 (3)0.069 (4)0.109 (5)−0.002 (3)0.035 (3)0.001 (4)
C210.079 (5)0.067 (4)0.078 (4)−0.014 (3)0.017 (4)−0.014 (3)
Cl10.0668 (10)0.0934 (11)0.0773 (10)0.0128 (9)0.0371 (8)0.0185 (9)
O20.080 (3)0.062 (2)0.062 (2)−0.0046 (19)0.021 (2)−0.0075 (17)
O10.088 (3)0.066 (2)0.058 (2)0.009 (2)0.026 (2)0.0048 (17)
C250.067 (4)0.062 (3)0.056 (3)0.005 (3)0.026 (3)−0.001 (3)
O60.095 (5)0.290 (10)0.239 (8)0.044 (6)0.111 (6)0.058 (8)
O30.218 (9)0.309 (11)0.290 (10)0.137 (8)0.198 (9)0.221 (9)
O40.315 (13)0.132 (7)0.77 (3)0.072 (8)0.431 (18)0.115 (12)
O50.305 (17)0.73 (4)0.158 (9)0.032 (19)−0.046 (10)−0.180 (15)

Geometric parameters (Å, °)

Mn1—N12.165 (4)C4—C51.428 (7)
Mn1—N22.119 (4)C3—C21.349 (8)
Mn1—N32.165 (4)C3—H30.9300
Mn1—N42.154 (4)C2—C11.390 (8)
Mn1—O12.292 (4)C2—H20.9300
Mn1—O22.218 (4)C5—H50.9300
C12—N11.354 (6)C19—C201.400 (8)
C12—C41.398 (6)C19—C181.426 (8)
C12—C111.447 (6)C15—C141.366 (9)
N3—C131.323 (7)C15—H150.9300
N3—C241.362 (6)C13—C141.397 (8)
N4—C221.323 (7)C13—H130.9300
N4—C231.354 (6)C22—C211.388 (8)
C7—C111.402 (6)C22—H220.9300
C7—C81.394 (7)C9—H90.9300
C7—C61.443 (7)C17—C181.360 (9)
C23—C191.404 (6)C17—H170.9300
C23—C241.439 (7)C1—H10.9300
C11—N21.352 (6)C20—C211.358 (9)
N2—C101.321 (6)C20—H200.9300
N1—C11.329 (6)C18—H180.9300
C24—C161.396 (7)C14—H140.9300
C6—C51.338 (7)C21—H210.9300
C6—H60.9300Cl1—O51.240 (10)
C16—C151.392 (8)Cl1—O31.304 (6)
C16—C171.436 (8)Cl1—O41.310 (8)
C10—C91.387 (7)Cl1—O61.369 (6)
C10—H100.9300O2—C251.249 (6)
C8—C91.363 (8)O1—C251.237 (6)
C8—H80.9300C25—H25A0.9300
C4—C31.414 (7)
N2—Mn1—N4113.60 (16)C12—C4—C5120.1 (5)
N2—Mn1—N178.20 (15)C3—C4—C5123.4 (5)
N4—Mn1—N195.73 (16)C2—C3—C4120.2 (5)
N2—Mn1—N3105.00 (15)C2—C3—H3119.9
N4—Mn1—N377.15 (15)C4—C3—H3119.9
N1—Mn1—N3172.86 (15)C3—C2—C1119.0 (5)
N2—Mn1—O291.90 (15)C3—C2—H2120.5
N4—Mn1—O2154.06 (15)C1—C2—H2120.5
N1—Mn1—O294.05 (16)C6—C5—C4120.7 (5)
N3—Mn1—O292.23 (15)C6—C5—H5119.7
N2—Mn1—O1145.38 (14)C4—C5—H5119.7
N4—Mn1—O198.79 (15)C23—C19—C20117.0 (5)
N1—Mn1—O187.04 (15)C23—C19—C18119.1 (6)
N3—Mn1—O193.45 (15)C20—C19—C18124.0 (5)
O2—Mn1—O157.78 (14)C16—C15—C14119.6 (6)
N1—C12—C4123.5 (5)C16—C15—H15120.2
N1—C12—C11117.1 (4)C14—C15—H15120.2
C4—C12—C11119.3 (4)N3—C13—C14122.6 (6)
C13—N3—C24118.0 (5)N3—C13—H13118.7
C13—N3—Mn1128.3 (4)C14—C13—H13118.7
C24—N3—Mn1112.8 (3)N4—C22—C21123.3 (6)
C22—N4—C23118.1 (5)N4—C22—H22118.3
C22—N4—Mn1128.3 (4)C21—C22—H22118.3
C23—N4—Mn1113.2 (3)C8—C9—C10119.7 (5)
C11—C7—C8118.2 (5)C8—C9—H9120.2
C11—C7—C6119.1 (5)C10—C9—H9120.2
C8—C7—C6122.7 (5)C18—C17—C16120.5 (5)
N4—C23—C19122.5 (5)C18—C17—H17119.7
N4—C23—C24117.9 (4)C16—C17—H17119.7
C19—C23—C24119.6 (5)N1—C1—C2123.5 (5)
N2—C11—C7122.6 (4)N1—C1—H1118.2
N2—C11—C12118.1 (4)C2—C1—H1118.2
C7—C11—C12119.3 (4)C21—C20—C19120.3 (5)
C10—N2—C11117.6 (4)C21—C20—H20119.8
C10—N2—Mn1128.5 (4)C19—C20—H20119.8
C11—N2—Mn1113.7 (3)C17—C18—C19121.4 (5)
C1—N1—C12117.3 (5)C17—C18—H18119.3
C1—N1—Mn1129.8 (4)C19—C18—H18119.3
C12—N1—Mn1112.6 (3)C15—C14—C13119.3 (6)
N3—C24—C16122.8 (5)C15—C14—H14120.3
N3—C24—C23117.1 (4)C13—C14—H14120.3
C16—C24—C23120.1 (5)C20—C21—C22118.8 (6)
C5—C6—C7121.4 (5)C20—C21—H21120.6
C5—C6—H6119.3C22—C21—H21120.6
C7—C6—H6119.3O5—Cl1—O3113.1 (12)
C15—C16—C24117.6 (5)O5—Cl1—O4100.6 (11)
C15—C16—C17123.1 (5)O3—Cl1—O4107.7 (6)
C24—C16—C17119.2 (6)O5—Cl1—O6104.3 (8)
N2—C10—C9123.3 (5)O3—Cl1—O6115.3 (5)
N2—C10—H10118.3O4—Cl1—O6115.0 (6)
C9—C10—H10118.3C25—O2—Mn191.2 (3)
C9—C8—C7118.7 (5)C25—O1—Mn188.2 (3)
C9—C8—H8120.7O1—C25—O2122.6 (5)
C7—C8—H8120.7O1—C25—H25A118.7
C12—C4—C3116.5 (5)O2—C25—H25A118.7
N2—Mn1—N3—C13−68.4 (5)Mn1—N3—C24—C23−11.8 (5)
N4—Mn1—N3—C13−179.7 (5)N4—C23—C24—N32.5 (6)
N1—Mn1—N3—C13175.8 (11)C19—C23—C24—N3−178.0 (4)
O2—Mn1—N3—C1324.2 (5)N4—C23—C24—C16−177.9 (4)
O1—Mn1—N3—C1382.1 (5)C19—C23—C24—C161.6 (7)
N2—Mn1—N3—C24123.4 (3)C11—C7—C6—C5−2.1 (7)
N4—Mn1—N3—C2412.1 (3)C8—C7—C6—C5177.8 (5)
N1—Mn1—N3—C247.6 (14)N3—C24—C16—C150.0 (7)
O2—Mn1—N3—C24−144.0 (3)C23—C24—C16—C15−179.5 (4)
O1—Mn1—N3—C24−86.1 (3)N3—C24—C16—C17−179.5 (4)
N2—Mn1—N4—C2275.1 (5)C23—C24—C16—C171.0 (7)
N1—Mn1—N4—C22−4.5 (5)C11—N2—C10—C9−0.6 (8)
N3—Mn1—N4—C22176.0 (5)Mn1—N2—C10—C9173.9 (4)
O2—Mn1—N4—C22−116.2 (5)C11—C7—C8—C90.2 (7)
O1—Mn1—N4—C22−92.4 (5)C6—C7—C8—C9−179.7 (5)
N2—Mn1—N4—C23−111.8 (3)N1—C12—C4—C30.4 (7)
N1—Mn1—N4—C23168.6 (3)C11—C12—C4—C3177.0 (4)
N3—Mn1—N4—C23−10.8 (3)N1—C12—C4—C5179.3 (5)
O2—Mn1—N4—C2357.0 (5)C11—C12—C4—C5−4.1 (7)
O1—Mn1—N4—C2380.7 (3)C12—C4—C3—C20.5 (8)
C22—N4—C23—C192.7 (7)C5—C4—C3—C2−178.3 (6)
Mn1—N4—C23—C19−171.2 (4)C4—C3—C2—C1−0.3 (9)
C22—N4—C23—C24−177.8 (4)C7—C6—C5—C40.7 (8)
Mn1—N4—C23—C248.3 (5)C12—C4—C5—C62.5 (8)
C8—C7—C11—N20.1 (7)C3—C4—C5—C6−178.7 (5)
C6—C7—C11—N2−180.0 (4)N4—C23—C19—C20−2.6 (7)
C8—C7—C11—C12−179.5 (4)C24—C23—C19—C20177.9 (5)
C6—C7—C11—C120.4 (7)N4—C23—C19—C18176.5 (4)
N1—C12—C11—N2−0.2 (6)C24—C23—C19—C18−3.0 (7)
C4—C12—C11—N2−177.0 (4)C24—C16—C15—C141.6 (8)
N1—C12—C11—C7179.4 (4)C17—C16—C15—C14−178.9 (5)
C4—C12—C11—C72.7 (7)C24—N3—C13—C140.2 (8)
C7—C11—N2—C100.1 (7)Mn1—N3—C13—C14−167.4 (4)
C12—C11—N2—C10179.7 (4)C23—N4—C22—C21−0.9 (8)
C7—C11—N2—Mn1−175.2 (3)Mn1—N4—C22—C21172.0 (4)
C12—C11—N2—Mn14.4 (5)C7—C8—C9—C10−0.7 (8)
N4—Mn1—N2—C1089.4 (5)N2—C10—C9—C80.9 (9)
N1—Mn1—N2—C10−179.5 (5)C15—C16—C17—C18178.4 (5)
N3—Mn1—N2—C107.1 (5)C24—C16—C17—C18−2.1 (8)
O2—Mn1—N2—C10−85.8 (4)C12—N1—C1—C21.7 (9)
O1—Mn1—N2—C10−112.8 (5)Mn1—N1—C1—C2−171.3 (5)
N4—Mn1—N2—C11−96.0 (3)C3—C2—C1—N1−0.9 (10)
N1—Mn1—N2—C11−4.8 (3)C23—C19—C20—C210.7 (8)
N3—Mn1—N2—C11−178.3 (3)C18—C19—C20—C21−178.3 (6)
O2—Mn1—N2—C1188.9 (3)C16—C17—C18—C190.7 (9)
O1—Mn1—N2—C1161.9 (4)C23—C19—C18—C171.9 (8)
C4—C12—N1—C1−1.5 (7)C20—C19—C18—C17−179.0 (6)
C11—C12—N1—C1−178.2 (5)C16—C15—C14—C13−2.2 (9)
C4—C12—N1—Mn1172.7 (4)N3—C13—C14—C151.4 (9)
C11—C12—N1—Mn1−4.0 (5)C19—C20—C21—C220.9 (9)
N2—Mn1—N1—C1178.0 (5)N4—C22—C21—C20−0.9 (10)
N4—Mn1—N1—C1−69.1 (5)N2—Mn1—O2—C25−159.4 (3)
N3—Mn1—N1—C1−64.7 (14)N4—Mn1—O2—C2530.9 (5)
O2—Mn1—N1—C186.9 (5)N1—Mn1—O2—C25−81.1 (3)
O1—Mn1—N1—C129.5 (5)N3—Mn1—O2—C2595.5 (3)
N2—Mn1—N1—C124.7 (3)O1—Mn1—O2—C252.8 (3)
N4—Mn1—N1—C12117.7 (3)N2—Mn1—O1—C2529.6 (5)
N3—Mn1—N1—C12122.1 (12)N4—Mn1—O1—C25−170.8 (3)
O2—Mn1—N1—C12−86.4 (3)N1—Mn1—O1—C2593.8 (3)
O1—Mn1—N1—C12−143.8 (3)N3—Mn1—O1—C25−93.3 (3)
C13—N3—C24—C16−0.9 (7)O2—Mn1—O1—C25−2.9 (3)
Mn1—N3—C24—C16168.6 (4)Mn1—O1—C25—O25.1 (6)
C13—N3—C24—C23178.6 (4)Mn1—O2—C25—O1−5.3 (6)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.932.573.468 (7)164
C5—H5···O40.932.433.355 (9)174
C6—H6···O1ii0.932.423.254 (7)149
C18—H18···O2iii0.932.543.250 (6)134

Symmetry codes: (i) −x, −y+2, −z; (ii) x, −y+3/2, z+1/2; (iii) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2641).

References

  • Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Hao, X.-M., Gu, C.-S., Song, W.-D. & Liu, J.-W. (2008). Acta Cryst. E64, m1052. [PMC free article] [PubMed]
  • Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Xu, T.-G. & Xu, D.-J. (2005). J. Coord. Chem 58, 437–442.
  • Zhang, B.-S. (2004). Chin. J. Struct. Chem 23, 1411–1445.
  • Zhu, L., Huang, J., Han, S.-Y. & An, Z. (2008). Acta Cryst. E64, m683. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography