PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): m1653–m1654.
Published online 2009 November 21. doi:  10.1107/S1600536809047400
PMCID: PMC2971835

Chlorido(1-cyclo­pentyl­idene-4-ethyl­thio­semicarbazidato-κ2 N 1,S)diphenyl­tin(IV)

Abstract

The Sn atom in the title compound, [Sn(C6H5)2(C8H14N3S)Cl], is penta­coordinated with a trigonal-bipyramidal coordination geometry. The 1-cyclo­pentyl­idene-4-ethyl­thio­semicarbazidate (cpetsc) ligand coordinates through the S atom and the N atom bonds to the cyclo­pentyl group, forming a five-membered ring with the Sn center. The chloride ligand and the coordinated N atom are in axial positions. In the crystal structure, inter­molecular N—H(...)Cl hydrogen bonds form chains along [101].

Related literature

For the biological activity of thio­semicarbazones, see: Dogmak et al. (1946 [triangle]); Klaymann et al. (1979 [triangle]); Logan et al. (1975 [triangle]); Liberta & West (1992 [triangle]). For their structural characteristics, see: Livingstone (1965 [triangle]); Akbar & Livingstone (1974 [triangle]); Campbell (1975 [triangle]); Padhey & Kauffman (1985 [triangle]); Haidue & Silverstru (1990 [triangle]); Huheey et al. (1993 [triangle]); West et al. (1990 [triangle], 1993 [triangle]); Lobana et al. (2009 [triangle]). For the anti­tumor activity of organotin(IV) complexes, see: Nath et al. (2001 [triangle]); Pellerito & Nagy (2002 [triangle]). For related structures, see: Swesi et al. (2005 [triangle], 2006 [triangle]); Valente et al. (1998 [triangle]); Huheey et al. (1993 [triangle]); Venkatraman et al. (1999 [triangle]); Pal et al. (2002 [triangle]); Teoh et al. (1999 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1653-scheme1.jpg

Experimental

Crystal data

  • [Sn(C6H5)2(C8H14N3S)Cl]
  • M r = 492.62
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1653-efi1.jpg
  • a = 8.9031 (9) Å
  • b = 22.951 (3) Å
  • c = 11.1381 (11) Å
  • β = 111.094 (4)°
  • V = 2123.4 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.44 mm−1
  • T = 90 K
  • 0.27 × 0.23 × 0.17 mm

Data collection

  • Nonius KappaCCD diffractometer with an Oxford Cryosystems Cryostream cooler
  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997 [triangle]) T min = 0.698, T max = 0.792
  • 33496 measured reflections
  • 8756 independent reflections
  • 7543 reflections with I > 2σ(I)
  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.026
  • wR(F 2) = 0.062
  • S = 1.04
  • 8756 reflections
  • 240 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.64 e Å−3
  • Δρmin = −1.38 e Å−3

Data collection: COLLECT (Nonius 2000 [triangle]); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809047400/lh2925sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809047400/lh2925Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

RV acknowledges the support for supplies by the Grant JSU RISE program (NIH grant No. 1RO25GM067122). The purchase of the diffractometer was made possible by grant No. LEQSF(1999–2000)-ENH-TR-13, administered by the Louisiana Board of Regents.

supplementary crystallographic information

Comment

Thiosemicarbazones can contain chemically active –N(H)C(S) or NN(H)C(S) chromophores which make them unique in their reactivity. They are also well known for biological activities (Klaymann et al., 1979; Logan et al., 1975) since the original discovery of their anti-tubercular activity by Dogmak et al. (1946). Many review articles have appeared in the literature highlighting their structural characteristics (Livingstone 1965; Akbar & Livingstone, 1974, Campbell, 1975; Padhey & Kauffman, 1985; Haidue & Silverstru, 1990; West et al., 1990; 1993; Lobana et al., 2009). Among the non-transition metallo-pharmaceuticals, organotin (IV) complexes have demonstrated relatively high antitumor activity (Nath et al., 2001, Pellerito & Nagy, 2002). The present report describes the structure of a diiorganotin(IV) complex with N4 ethyl-substituted cyclopentanothiosemicarbazone, cpetsc.

The reaction of cpetsc with SnPh2Cl2 formed a monomeric anionic complex (see Fig. 1). The geometry of the tin(IV) center is penta-coordinated with a distorted trigonal bipyramidal (TBP) geometry. The two phenyl carbons C21 and C31 are positioned at the equatorial plane, while the azomethine nitrogen N1 and chlorine atoms, Cl1 occupy the axial positions. The bond distances involving the Sn atom are comparable to the reported values for dimethyl and diphenyl tin(IV) complexes of acetone (Swesi et al., 2005, Swesi et al., 2006) and diphenyl tin(IV) dichloro thiophene-2-carboxaldehyde (Teoh et al. 1999).

Significant lengthening of the C ═S bond and shortening of the C—N bond is observed as compared with the parent ligand (Valente et al., 1998, Venkatraman et al., 1999). The C—S bond distance (1.7709 Å) is relatively shorter than a single bond distance (1.81 Å) but longer than a C—S double bond (1.62 Å) distance (Huheey et al., 1993). The nature of coordination exhibited by the thiosemicarbazones are mainly due to the E and Z configuration of the ligand and the mode of coordination depends on the steric bulk of the carbonylic carbon atom linked trans to the hydrazinic nitrogen. A stable five-membered ring will be formed if the carbonylic carbon carries a small group, or else a four membered ring with larger group (Pal et al., 2002). In the present case, the metal is bound by the thiosemicarbazone, forming a five-membered chelate ring.

N—H···Cl intermolecular hydrogen bonds form chains along [1 0 1], as shown in Figure 2.

Experimental

A solution of diphenyltindichloride (0.344 g, 1.0 mmol) in dry methanol (10 ml) was added slowly to a boiling solution of cyclopentano-4-ethyl-3-thiosemicarbazone (0.185 g, 1.0 mmol). in methanol (50 ml) (Valente et al., 1998, Venkatraman et al., 1999). The resulting mixture was refluxed for a period of 2 h and then allowed to cool to room temperature in presence of air. Colorless rods of the title complex were obtained on slow evaporation of the solvent (yield approx. 65%, mp 460–462 K) at room temperature (C20H24ClN3SSn, C, 47.55%, H, 5.45%, N, 8.48%, S, 6.45%). 1HNMR: 7.67ppm, 9.73ppm. Main IR peaks (KBr): νN—H 3400, 3305, 3080 cm-1, νC=S 820, 730, 705 cm-1.

Refinement

Hydrogen atoms were placed in idealized positions, with C—H bond distances 0.95 - 0.99 Å, and thereafter treated as riding. Displacement parameters for H were assigned as Uiso = 1.2Ueq of the attached atom (1.5 for methyl). A torsional parameter was refined for the methyl group. The largest negative residual difference map peak is 0.74 Å from the Sn atom.

Figures

Fig. 1.
The molecular structure of the title compound with the numbering scheme and ellipsoids at the 50% level.
Fig. 2.
A portion of the hydrogen-bonded chain extending in along [1 0 1]. Hydrogen bonds are shown as dotted lines.

Crystal data

[Sn(C6H5)2(C8H14N3S)Cl]F(000) = 992
Mr = 492.62Dx = 1.541 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8037 reflections
a = 8.9031 (9) Åθ = 2.5–34.8°
b = 22.951 (3) ŵ = 1.44 mm1
c = 11.1381 (11) ÅT = 90 K
β = 111.094 (4)°Fragment, colorless
V = 2123.4 (4) Å30.27 × 0.23 × 0.17 mm
Z = 4

Data collection

Nonius KappaCCD diffractometer with an Oxford Cryosystems Cryostream cooler8756 independent reflections
Radiation source: fine-focus sealed tube7543 reflections with I > 2σ(I)
graphiteRint = 0.022
ω and [var phi] scansθmax = 34.8°, θmin = 3.0°
Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997)h = −13→13
Tmin = 0.698, Tmax = 0.792k = −35→35
33496 measured reflectionsl = −17→16

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.062w = 1/[σ2(Fo2) + (0.0232P)2 + 1.4419P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.002
8756 reflectionsΔρmax = 0.64 e Å3
240 parametersΔρmin = −1.38 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00150 (18)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Sn10.542305 (11)0.626341 (4)0.258844 (9)0.01109 (3)
Cl10.25741 (4)0.662360 (15)0.18735 (4)0.01732 (7)
S10.58505 (5)0.680095 (16)0.45705 (4)0.01588 (7)
N10.80541 (14)0.60297 (5)0.38227 (11)0.0127 (2)
N20.88356 (16)0.63137 (5)0.49842 (12)0.0148 (2)
N30.86198 (18)0.69504 (6)0.64811 (13)0.0192 (2)
H3N0.817 (3)0.7237 (10)0.660 (2)0.023*
C10.79332 (18)0.66634 (6)0.53568 (14)0.0147 (2)
C31.0332 (2)0.68887 (7)0.72462 (17)0.0249 (3)
H3A1.06940.72300.78220.030*
H3B1.09510.68820.66650.030*
C41.0678 (3)0.63345 (8)0.8051 (2)0.0403 (6)
H4A1.01730.63600.86990.060*
H4B1.18440.62880.84800.060*
H4C1.02410.59980.74910.060*
C110.89645 (16)0.56885 (6)0.34655 (13)0.0125 (2)
C121.07472 (17)0.56124 (7)0.41598 (14)0.0154 (2)
H12A1.09830.54650.50450.018*
H12B1.13240.59850.42040.018*
C131.12338 (17)0.51630 (7)0.33416 (15)0.0167 (3)
H13A1.11910.47620.36560.020*
H13B1.23330.52410.33550.020*
C140.99740 (17)0.52473 (7)0.19811 (14)0.0161 (3)
H14A1.02320.55910.15530.019*
H14B0.99010.48980.14410.019*
C150.84068 (17)0.53416 (6)0.22362 (13)0.0140 (2)
H15A0.76100.55620.15270.017*
H15B0.79270.49660.23480.017*
C210.47816 (16)0.53643 (6)0.24833 (13)0.0128 (2)
C220.36518 (19)0.51214 (7)0.13708 (15)0.0179 (3)
H220.31480.53590.06360.021*
C230.3266 (2)0.45318 (7)0.13406 (16)0.0223 (3)
H230.25000.43680.05840.027*
C240.3997 (2)0.41813 (7)0.24138 (17)0.0215 (3)
H240.37320.37790.23880.026*
C250.51138 (19)0.44199 (7)0.35228 (16)0.0188 (3)
H250.56090.41820.42570.023*
C260.55061 (17)0.50098 (6)0.35548 (14)0.0152 (2)
H260.62730.51720.43130.018*
C310.60608 (17)0.67142 (6)0.11590 (14)0.0140 (2)
C320.4852 (2)0.69413 (7)0.00748 (15)0.0183 (3)
H320.37540.6884−0.00340.022*
C330.5245 (2)0.72517 (8)−0.08492 (16)0.0243 (3)
H330.44140.7401−0.15860.029*
C340.6850 (2)0.73426 (8)−0.06946 (17)0.0257 (3)
H340.71140.7559−0.13190.031*
C350.8061 (2)0.71168 (7)0.03722 (17)0.0235 (3)
H350.91570.71750.04750.028*
C360.76722 (18)0.68049 (6)0.12944 (15)0.0171 (3)
H360.85090.66520.20240.021*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Sn10.01215 (4)0.00957 (4)0.01273 (5)0.00074 (3)0.00592 (3)0.00121 (3)
Cl10.01357 (14)0.01546 (15)0.02368 (16)0.00282 (11)0.00761 (12)0.00180 (12)
S10.01974 (16)0.01448 (15)0.01573 (15)0.00316 (12)0.00920 (13)−0.00064 (12)
N10.0134 (5)0.0116 (5)0.0126 (5)0.0001 (4)0.0042 (4)−0.0010 (4)
N20.0179 (5)0.0123 (5)0.0132 (5)0.0000 (4)0.0043 (4)−0.0020 (4)
N30.0266 (7)0.0136 (5)0.0163 (6)0.0001 (5)0.0065 (5)−0.0036 (4)
C10.0210 (6)0.0101 (5)0.0132 (6)−0.0003 (5)0.0065 (5)0.0015 (4)
C30.0310 (9)0.0161 (7)0.0201 (7)−0.0033 (6)0.0003 (6)−0.0042 (6)
C40.0507 (13)0.0213 (8)0.0283 (9)−0.0043 (8)−0.0106 (9)0.0016 (7)
C110.0122 (5)0.0121 (5)0.0134 (6)0.0001 (4)0.0049 (4)0.0007 (4)
C120.0120 (6)0.0172 (6)0.0158 (6)0.0005 (5)0.0038 (5)−0.0010 (5)
C130.0131 (6)0.0202 (7)0.0182 (6)0.0029 (5)0.0073 (5)−0.0001 (5)
C140.0157 (6)0.0189 (6)0.0159 (6)0.0021 (5)0.0084 (5)0.0003 (5)
C150.0137 (6)0.0150 (6)0.0137 (6)0.0009 (5)0.0056 (5)−0.0020 (5)
C210.0131 (6)0.0124 (5)0.0154 (6)0.0006 (4)0.0080 (5)0.0011 (5)
C220.0222 (7)0.0173 (6)0.0140 (6)−0.0023 (5)0.0065 (5)0.0006 (5)
C230.0302 (8)0.0199 (7)0.0187 (7)−0.0074 (6)0.0110 (6)−0.0058 (6)
C240.0285 (8)0.0121 (6)0.0283 (8)−0.0029 (5)0.0157 (6)−0.0023 (6)
C250.0190 (7)0.0139 (6)0.0248 (7)0.0017 (5)0.0094 (6)0.0057 (5)
C260.0145 (6)0.0144 (6)0.0171 (6)−0.0002 (5)0.0063 (5)0.0026 (5)
C310.0169 (6)0.0117 (5)0.0143 (6)−0.0002 (5)0.0070 (5)0.0000 (5)
C320.0214 (7)0.0174 (6)0.0153 (6)0.0010 (5)0.0056 (5)0.0017 (5)
C330.0334 (9)0.0227 (7)0.0167 (7)0.0036 (6)0.0090 (6)0.0058 (6)
C340.0388 (10)0.0217 (8)0.0233 (8)−0.0003 (7)0.0191 (7)0.0065 (6)
C350.0273 (8)0.0206 (7)0.0289 (8)−0.0028 (6)0.0178 (7)0.0037 (6)
C360.0182 (6)0.0149 (6)0.0196 (7)−0.0015 (5)0.0085 (5)0.0017 (5)

Geometric parameters (Å, °)

Sn1—C212.1331 (14)C14—H14A0.9900
Sn1—C312.1397 (14)C14—H14B0.9900
Sn1—N12.3123 (12)C15—H15A0.9900
Sn1—S12.4363 (4)C15—H15B0.9900
Sn1—Cl12.5095 (4)C21—C261.396 (2)
S1—C11.7709 (16)C21—C221.400 (2)
N1—C111.2887 (18)C22—C231.394 (2)
N1—N21.3909 (17)C22—H220.9500
N2—C11.3047 (19)C23—C241.393 (2)
N3—C11.3508 (19)C23—H230.9500
N3—C31.461 (2)C24—C251.389 (2)
N3—H3N0.80 (2)C24—H240.9500
C3—C41.522 (3)C25—C261.395 (2)
C3—H3A0.9900C25—H250.9500
C3—H3B0.9900C26—H260.9500
C4—H4A0.9800C31—C321.397 (2)
C4—H4B0.9800C31—C361.403 (2)
C4—H4C0.9800C32—C331.396 (2)
C11—C121.5047 (19)C32—H320.9500
C11—C151.505 (2)C33—C341.392 (3)
C12—C131.538 (2)C33—H330.9500
C12—H12A0.9900C34—C351.386 (3)
C12—H12B0.9900C34—H340.9500
C13—C141.539 (2)C35—C361.394 (2)
C13—H13A0.9900C35—H350.9500
C13—H13B0.9900C36—H360.9500
C14—C151.536 (2)
C21—Sn1—C31124.36 (5)C15—C14—C13102.96 (12)
C21—Sn1—N190.12 (5)C15—C14—H14A111.2
C31—Sn1—N194.09 (5)C13—C14—H14A111.2
C21—Sn1—S1119.41 (4)C15—C14—H14B111.2
C31—Sn1—S1115.63 (4)C13—C14—H14B111.2
N1—Sn1—S177.54 (3)H14A—C14—H14B109.1
C21—Sn1—Cl194.66 (4)C11—C15—C14102.62 (11)
C31—Sn1—Cl196.50 (4)C11—C15—H15A111.2
N1—Sn1—Cl1163.15 (3)C14—C15—H15A111.2
S1—Sn1—Cl186.050 (13)C11—C15—H15B111.2
C1—S1—Sn198.75 (5)C14—C15—H15B111.2
C11—N1—N2114.34 (12)H15A—C15—H15B109.2
C11—N1—Sn1124.93 (9)C26—C21—C22119.24 (13)
N2—N1—Sn1120.33 (9)C26—C21—Sn1118.99 (10)
C1—N2—N1115.15 (12)C22—C21—Sn1121.77 (10)
C1—N3—C3121.50 (14)C23—C22—C21120.02 (14)
C1—N3—H3N117.8 (16)C23—C22—H22120.0
C3—N3—H3N117.2 (16)C21—C22—H22120.0
N2—C1—N3118.03 (14)C24—C23—C22120.34 (15)
N2—C1—S1127.40 (11)C24—C23—H23119.8
N3—C1—S1114.56 (11)C22—C23—H23119.8
N3—C3—C4111.85 (16)C25—C24—C23119.94 (14)
N3—C3—H3A109.2C25—C24—H24120.0
C4—C3—H3A109.2C23—C24—H24120.0
N3—C3—H3B109.2C24—C25—C26119.85 (14)
C4—C3—H3B109.2C24—C25—H25120.1
H3A—C3—H3B107.9C26—C25—H25120.1
C3—C4—H4A109.5C25—C26—C21120.61 (14)
C3—C4—H4B109.5C25—C26—H26119.7
H4A—C4—H4B109.5C21—C26—H26119.7
C3—C4—H4C109.5C32—C31—C36118.50 (14)
H4A—C4—H4C109.5C32—C31—Sn1119.69 (11)
H4B—C4—H4C109.5C36—C31—Sn1121.78 (11)
N1—C11—C12125.18 (13)C33—C32—C31120.55 (15)
N1—C11—C15124.34 (12)C33—C32—H32119.7
C12—C11—C15110.35 (12)C31—C32—H32119.7
C11—C12—C13104.07 (11)C34—C33—C32120.25 (16)
C11—C12—H12A110.9C34—C33—H33119.9
C13—C12—H12A110.9C32—C33—H33119.9
C11—C12—H12B110.9C35—C34—C33119.81 (15)
C13—C12—H12B110.9C35—C34—H34120.1
H12A—C12—H12B109.0C33—C34—H34120.1
C12—C13—C14103.78 (11)C34—C35—C36120.07 (16)
C12—C13—H13A111.0C34—C35—H35120.0
C14—C13—H13A111.0C36—C35—H35120.0
C12—C13—H13B111.0C35—C36—C31120.82 (15)
C14—C13—H13B111.0C35—C36—H36119.6
H13A—C13—H13B109.0C31—C36—H36119.6
C21—Sn1—S1—C189.47 (6)C31—Sn1—C21—C26131.64 (11)
C31—Sn1—S1—C1−82.09 (6)N1—Sn1—C21—C2636.61 (11)
N1—Sn1—S1—C16.48 (6)S1—Sn1—C21—C26−39.13 (12)
Cl1—Sn1—S1—C1−177.41 (5)Cl1—Sn1—C21—C26−127.21 (11)
C21—Sn1—N1—C1159.16 (12)C31—Sn1—C21—C22−48.53 (14)
C31—Sn1—N1—C11−65.32 (12)N1—Sn1—C21—C22−143.57 (12)
S1—Sn1—N1—C11179.32 (12)S1—Sn1—C21—C22140.69 (11)
Cl1—Sn1—N1—C11165.84 (8)Cl1—Sn1—C21—C2252.61 (12)
C21—Sn1—N1—N2−128.54 (10)C26—C21—C22—C23−0.2 (2)
C31—Sn1—N1—N2106.99 (10)Sn1—C21—C22—C23180.00 (12)
S1—Sn1—N1—N2−8.38 (9)C21—C22—C23—C240.1 (3)
Cl1—Sn1—N1—N2−21.85 (18)C22—C23—C24—C250.2 (3)
C11—N1—N2—C1179.64 (13)C23—C24—C25—C26−0.3 (2)
Sn1—N1—N2—C16.56 (16)C24—C25—C26—C210.2 (2)
N1—N2—C1—N3179.70 (12)C22—C21—C26—C250.0 (2)
N1—N2—C1—S11.32 (19)Sn1—C21—C26—C25179.85 (11)
C3—N3—C1—N21.9 (2)C21—Sn1—C31—C3284.09 (13)
C3—N3—C1—S1−179.53 (12)N1—Sn1—C31—C32177.03 (12)
Sn1—S1—C1—N2−7.17 (14)S1—Sn1—C31—C32−104.83 (11)
Sn1—S1—C1—N3174.40 (10)Cl1—Sn1—C31—C32−16.10 (12)
C1—N3—C3—C4−80.7 (2)C21—Sn1—C31—C36−97.81 (13)
N2—N1—C11—C12−3.6 (2)N1—Sn1—C31—C36−4.86 (12)
Sn1—N1—C11—C12169.12 (10)S1—Sn1—C31—C3673.28 (12)
N2—N1—C11—C15−178.95 (12)Cl1—Sn1—C31—C36162.00 (11)
Sn1—N1—C11—C15−6.2 (2)C36—C31—C32—C33−0.1 (2)
N1—C11—C12—C13179.96 (14)Sn1—C31—C32—C33178.09 (12)
C15—C11—C12—C13−4.12 (16)C31—C32—C33—C34−0.5 (3)
C11—C12—C13—C1427.08 (15)C32—C33—C34—C350.9 (3)
C12—C13—C14—C15−39.94 (14)C33—C34—C35—C36−0.7 (3)
N1—C11—C15—C14155.55 (14)C34—C35—C36—C310.1 (3)
C12—C11—C15—C14−20.40 (15)C32—C31—C36—C350.3 (2)
C13—C14—C15—C1136.64 (14)Sn1—C31—C36—C35−177.83 (12)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N3—H3N···Cl1i0.80 (2)2.71 (2)3.4731 (15)160 (2)

Symmetry codes: (i) x+1/2, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2925).

References

  • Akbar, A., & Livingstone, S. E. (1974). Coord. Chem. Rev. 13, 101–132.
  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  • Campbell, M. J. M. (1975). Coord. Chem. Rev. 15, 279–319.
  • Dogmak, G., Behnisch, R., Meitzsch, F. & Scmidt, H. (1946). Naturwissenschaften, 33, 314–315.
  • Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  • Haidue, I. & Silverstru, C. (1990). Coord. Chem. Rev. 99, 253–256.
  • Huheey, J. E., Keiter, E. A. & Keiter, R. L. (1993). Inorganic Chemistry. Principles of Structure and Reactivity. 4th ed. New York: Harper Collins.
  • Klaymann, D. L., Bartosevich, J. F., Griffin, T. S., Mason, C. J. & Scovill, J. P. (1979). J. Med. Chem. 22, 855–862.
  • Liberta, A. E. & West, D. X. (1992). Biometals, 5, 121–126. [PubMed]
  • Livingstone, S. E. (1965). Quart. Rev. Chem. Soc. 19, 386–425.
  • Lobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977–1055.
  • Logan, J. C., Fox, M. P., Morgan, J. H., Makohon, A. M. & Pfay, C. J. J. (1975). Gen. Virol. 28, 271–283. [PubMed]
  • Nath, M. S., Pokharia, S. & Yadav, R. (2001). Coord. Chem. Rev. 215, 99–149.
  • Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Padhey, S. & Kauffman, G. B. (1985). Coord. Chem. Rev. 63, 127–160.
  • Pal, I., Basuli, F. & Bhattacharya, S. (2002). Proc. Indian Acad. Sci. 114, 255–268.
  • Pellerito, L. & Nagy, L. (2002). Coord. Chem. Rev. 224, 111–150.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Swesi, A. T., Farina, Y., Venkatraman, R. & Ng, S. W. (2006). Acta Cryst. E62, m3016–m3017.
  • Swesi, A. T., Farina, Y. & Yamin, B. M. (2005). Acta Cryst. E61, m2421–m2423.
  • Teoh, S.-G., Ang, S.-H., Fun, H.-K. & Ong, G. W. (1999). J. Organomet. Chem. 580, 17–21.
  • Valente, E. J., Zubkowski, J. D., Jabalameli, A., Mazhari, S., Venkatraman, R. & Sullivan, R. H. (1998). J. Chem. Crystallogr. 28, 27–33.
  • Venkatraman, R., Davis, K., Shelby, A., Zubkowski, J. D. & Valente, E. J. (1999). J. Chem. Crystallogr. 29, 429–434.
  • West, D. X., Liberta, A. E., Padhey, S. B., Chikate, R. C., Sonawane, P. B., Kumbhar, A. S. & Yernade, R. G. (1993). Coord. Chem. Rev. 123, 49–71.
  • West, D. X., Padhey, S. B., Sonawane, P. B. & Chikate, R. C. (1990). Asian J. Chem. Revs. 1, 125–137.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography