PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): o3215.
Published online 2009 November 25. doi:  10.1107/S1600536809049861
PMCID: PMC2971829

1-(2,4-Dinitro­phen­yl)-3,3-dinitro­azetidine

Abstract

In the title compound, C9H7N5O8, the dihedral angle between the mean plane of the azetidine ring and that of the benzene ring is 26.1 (1)°; the planes of the two nitro groups of the azetidine ring are aligned at 88.7 (1)°.

Related literature

Highly nitrated small-ring heterocycles are good candidates for energetic materials because of the increased performance from the additional energy release upon opening of the strained ring system during decomposition, see: Frumkin et al. (1999 [triangle]). Azetidine-based explosives, such as 1,3,3-trinitro­azetidine (TNAZ) demonstrate excellent performance, see: Archibald et al., (1990 [triangle]); Hiskey & Coburn (1994a [triangle],b [triangle]). The title compound is a derivative of 3,3-dinitro­azetidine (DNAZ) (Hiskey et al., 1992 [triangle], 1993 [triangle]), which is a derivative of TNAZ. For the use of DNAZ in the preparation of a variety of solid energetic compounds, see: Ma et al. (2009a [triangle],b [triangle],c [triangle]); Gao et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o3215-scheme1.jpg

Experimental

Crystal data

  • C9H7N5O8
  • M r = 313.20
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o3215-efi1.jpg
  • a = 8.113 (2) Å
  • b = 10.676 (3) Å
  • c = 14.398 (4) Å
  • β = 104.681 (4)°
  • V = 1206.3 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.15 mm−1
  • T = 293 K
  • 0.31 × 0.26 × 0.20 mm

Data collection

  • Bruker SMART APEX diffractometer
  • Absorption correction: none
  • 5860 measured reflections
  • 2140 independent reflections
  • 1670 reflections with I > 2σ(I)
  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.118
  • S = 1.20
  • 2140 reflections
  • 199 parameters
  • H-atom parameters constrained
  • Δρmax = 0.21 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: SMART (Bruker, 2003 [triangle]); cell refinement: SAINT (Bruker, 2003 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809049861/ng2691sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809049861/ng2691Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the National Natural Science Foundation of China (No. 20603026) and the Natural Science Foundation of Shaanxi Province, China (No. 2009JQ2002) for generously supporting this study.

supplementary crystallographic information

Comment

Highly nitrated small-ring heterocycles are good candidates for energetic materials because of the increased performance from the additional energy release upon opening of the strained ring system during decomposition (Frumkin et al., 1999). Azetidine-based explosives, such as 1,3,3-trinitroazetidine (TNAZ) (Archibald et al., 1990; Hiskey et al., 1994a,b) demonstrate excellent performance partly because of the high strain associated with the four-membered ring. As one of the important derivates of TNAZ, 3,3-dinitroazetidine (DNAZ) (Hiskey et al., 1992; Hiskey et al., 1993) can prepare a variety of solid energetic compounds (Ma et al., 2009a,b,c; Gao et al., 2009). The title compound (I) is a DNAZ derivates. The dihedral angle between the azetidine ring and benzene ring is 26.1° and the planes of two nitryl of azetidine ring is 88.7°. There are no important intermolecular contacts in the crystal structure.

Experimental

A solution of DNAZ (0.2353 g, 1.6 mmol), 2,4-dinitrochlorobenzene (0.33 ml, 1.6 mmol), and NaHCO3 (0.28 g, 3.2 mmol) in dichloromethane (30.0 ml) was stirred under reflux for 20 h. The reaction mixture was concentrated in vacuo, water (30 ml) was added, and the unstable mixture was extracted rapidly with dichloromethane (3 * 15 ml). The combined extracts were dried (MgSO4,), the solvent was concentrated in vacuo, and ethanol (20 ml) was added, and the residue was filtrated to give the yellow compound in 30% yield. Crystals were obtained from dichloromethane, by slow evaporation at room temperature. Elemental analysis calculated for C9H7N5O8: C 34.61, N 22.36, H 2.253%; found: C 34.61, N 22.22, H 2.249%. IR (KBr, cm-1): 3100.29, 1585.18, 1526.85, 1335.18, 1304.76, 869.25, 820.72.

Refinement

H atoms were placed at calculated idealized positions and refined using a riding model, with C—H distances in the range 0.93–0.97 Å.

Figures

Fig. 1.
The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are drawn as spheres of arbitrary radius.

Crystal data

C9H7N5O8F(000) = 640
Mr = 313.20Dx = 1.724 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1904 reflections
a = 8.113 (2) Åθ = 2.4–26.0°
b = 10.676 (3) ŵ = 0.15 mm1
c = 14.398 (4) ÅT = 293 K
β = 104.681 (4)°Block, yellow
V = 1206.3 (6) Å30.31 × 0.26 × 0.20 mm
Z = 4

Data collection

Bruker APEXII diffractometer1670 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.019
graphiteθmax = 25.1°, θmin = 2.4°
[var phi] and ω scansh = −9→9
5860 measured reflectionsk = −11→12
2140 independent reflectionsl = −17→17

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.20w = 1/[σ2(Fo2) + (0.063P)2 + 0.0921P] where P = (Fo2 + 2Fc2)/3
2140 reflections(Δ/σ)max = 0.028
199 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O20.56725 (18)0.14099 (15)0.95776 (10)0.0576 (4)
N10.06769 (18)0.16834 (14)0.89752 (10)0.0360 (4)
C4−0.0303 (2)0.25527 (16)0.92696 (11)0.0324 (4)
O8−0.18514 (19)0.22095 (15)0.72839 (10)0.0566 (4)
N20.4618 (2)0.14859 (15)0.88135 (11)0.0419 (4)
C9−0.1501 (2)0.33688 (17)0.86745 (11)0.0334 (4)
N30.3038 (2)−0.04265 (16)0.84420 (11)0.0435 (4)
N5−0.20374 (19)0.32296 (17)0.76316 (11)0.0429 (4)
C10.1375 (2)0.16202 (18)0.81278 (12)0.0376 (4)
H1A0.16600.24300.79060.045*
H1B0.06890.11310.76020.045*
C30.2168 (2)0.10713 (18)0.96128 (12)0.0384 (4)
H3B0.19080.02880.98860.046*
H3A0.28340.16181.01050.046*
N4−0.2936 (2)0.53426 (18)1.04331 (15)0.0556 (5)
C7−0.2070 (2)0.43720 (19)1.00353 (13)0.0411 (5)
O30.4390 (2)−0.07976 (16)0.83333 (12)0.0679 (5)
C6−0.0999 (2)0.35558 (19)1.06406 (13)0.0441 (5)
H6−0.08660.36061.13000.053*
C20.2905 (2)0.09108 (16)0.87430 (12)0.0340 (4)
C8−0.2340 (2)0.42800 (18)0.90514 (13)0.0388 (4)
H8−0.30820.48280.86480.047*
O10.4830 (2)0.19814 (17)0.80972 (11)0.0655 (5)
O7−0.2721 (2)0.41195 (17)0.71504 (11)0.0671 (5)
O6−0.3804 (2)0.61021 (15)0.98923 (15)0.0718 (5)
O40.1762 (2)−0.10369 (15)0.83337 (12)0.0678 (5)
C5−0.0131 (2)0.26685 (19)1.02664 (12)0.0407 (5)
H50.05960.21251.06830.049*
O5−0.2740 (3)0.5369 (2)1.13090 (13)0.0877 (7)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O20.0396 (8)0.0687 (11)0.0560 (9)−0.0018 (7)−0.0034 (7)0.0035 (7)
N10.0336 (8)0.0430 (9)0.0315 (7)0.0082 (7)0.0083 (6)0.0019 (6)
C40.0289 (9)0.0349 (10)0.0344 (9)−0.0039 (7)0.0098 (7)−0.0011 (7)
O80.0486 (9)0.0709 (11)0.0446 (8)0.0096 (8)0.0012 (6)−0.0167 (7)
N20.0366 (9)0.0427 (9)0.0457 (9)0.0007 (7)0.0092 (7)0.0018 (7)
C90.0295 (9)0.0389 (10)0.0311 (8)−0.0015 (8)0.0062 (7)−0.0005 (7)
N30.0490 (10)0.0384 (9)0.0433 (9)0.0025 (8)0.0123 (7)−0.0007 (7)
N50.0306 (8)0.0574 (11)0.0387 (9)0.0037 (8)0.0050 (7)0.0027 (8)
C10.0342 (10)0.0451 (11)0.0338 (9)0.0067 (8)0.0089 (7)0.0017 (8)
C30.0375 (10)0.0404 (11)0.0364 (9)0.0059 (8)0.0075 (7)0.0039 (8)
N40.0443 (10)0.0497 (12)0.0779 (13)−0.0058 (9)0.0253 (9)−0.0222 (10)
C70.0352 (10)0.0414 (11)0.0497 (11)−0.0052 (8)0.0164 (8)−0.0131 (9)
O30.0609 (10)0.0625 (11)0.0811 (11)0.0189 (8)0.0196 (8)−0.0179 (8)
C60.0430 (11)0.0556 (13)0.0356 (9)−0.0058 (9)0.0135 (8)−0.0069 (9)
C20.0320 (9)0.0330 (10)0.0359 (9)0.0019 (7)0.0068 (7)0.0003 (7)
C80.0309 (9)0.0364 (10)0.0483 (10)−0.0013 (8)0.0086 (8)0.0015 (8)
O10.0474 (9)0.0908 (13)0.0596 (9)−0.0145 (8)0.0159 (7)0.0171 (8)
O70.0700 (11)0.0777 (12)0.0478 (8)0.0224 (9)0.0043 (7)0.0165 (8)
O60.0689 (11)0.0460 (10)0.1116 (14)0.0094 (9)0.0432 (10)−0.0049 (10)
O40.0725 (11)0.0498 (10)0.0845 (11)−0.0217 (8)0.0263 (9)−0.0118 (8)
C50.0397 (10)0.0480 (12)0.0339 (10)0.0030 (9)0.0083 (8)0.0032 (8)
O50.0877 (13)0.1094 (16)0.0693 (11)0.0103 (11)0.0260 (10)−0.0450 (11)

Geometric parameters (Å, °)

O2—N21.2133 (19)C1—C21.530 (2)
N1—C41.358 (2)C1—H1A0.9700
N1—C11.471 (2)C1—H1B0.9700
N1—C31.473 (2)C3—C21.528 (3)
C4—C51.412 (2)C3—H3B0.9700
C4—C91.420 (2)C3—H3A0.9700
O8—N51.224 (2)N4—O61.217 (2)
N2—O11.209 (2)N4—O51.231 (2)
N2—C21.499 (2)N4—C71.449 (3)
C9—C81.375 (3)C7—C61.375 (3)
C9—N51.461 (2)C7—C81.381 (3)
N3—O41.199 (2)C6—C51.370 (3)
N3—O31.213 (2)C6—H60.9300
N3—C21.504 (2)C8—H80.9300
N5—O71.223 (2)C5—H50.9300
C4—N1—C1132.01 (15)C2—C3—H3B113.9
C4—N1—C3124.20 (14)N1—C3—H3A113.9
C1—N1—C393.91 (13)C2—C3—H3A113.9
N1—C4—C5117.53 (15)H3B—C3—H3A111.1
N1—C4—C9126.61 (15)O6—N4—O5122.96 (19)
C5—C4—C9115.86 (16)O6—N4—C7118.91 (19)
O1—N2—O2125.62 (17)O5—N4—C7118.1 (2)
O1—N2—C2116.82 (15)C6—C7—C8121.05 (18)
O2—N2—C2117.57 (16)C6—C7—N4119.64 (18)
C8—C9—C4121.83 (16)C8—C7—N4119.31 (18)
C8—C9—N5115.41 (15)C5—C6—C7119.63 (17)
C4—C9—N5122.54 (16)C5—C6—H6120.2
O4—N3—O3125.76 (19)C7—C6—H6120.2
O4—N3—C2115.52 (16)N2—C2—N3105.99 (14)
O3—N3—C2118.72 (17)N2—C2—C3116.55 (14)
O7—N5—O8123.01 (16)N3—C2—C3114.47 (15)
O7—N5—C9118.51 (17)N2—C2—C1116.00 (15)
O8—N5—C9118.39 (15)N3—C2—C1114.20 (14)
N1—C1—C288.22 (12)C3—C2—C189.46 (13)
N1—C1—H1A113.9C9—C8—C7119.30 (17)
C2—C1—H1A113.9C9—C8—H8120.3
N1—C1—H1B113.9C7—C8—H8120.4
C2—C1—H1B113.9C6—C5—C4122.15 (17)
H1A—C1—H1B111.1C6—C5—H5118.9
N1—C3—C288.23 (12)C4—C5—H5118.9
N1—C3—H3B113.9
C1—N1—C4—C5−151.31 (18)O1—N2—C2—C3−140.71 (18)
C3—N1—C4—C5−15.0 (3)O2—N2—C2—C339.7 (2)
C1—N1—C4—C928.7 (3)O1—N2—C2—C1−37.3 (2)
C3—N1—C4—C9165.05 (17)O2—N2—C2—C1143.13 (16)
N1—C4—C9—C8−175.18 (17)O4—N3—C2—N2−178.93 (15)
C5—C4—C9—C84.9 (3)O3—N3—C2—N21.3 (2)
N1—C4—C9—N510.4 (3)O4—N3—C2—C351.2 (2)
C5—C4—C9—N5−169.55 (16)O3—N3—C2—C3−128.56 (18)
C8—C9—N5—O723.2 (2)O4—N3—C2—C1−50.0 (2)
C4—C9—N5—O7−162.06 (18)O3—N3—C2—C1130.29 (18)
C8—C9—N5—O8−153.55 (17)N1—C3—C2—N2122.10 (16)
C4—C9—N5—O821.2 (2)N1—C3—C2—N3−113.44 (15)
C4—N1—C1—C2148.25 (19)N1—C3—C2—C13.06 (14)
C3—N1—C1—C23.19 (14)N1—C1—C2—N2−122.59 (15)
C4—N1—C3—C2−152.23 (17)N1—C1—C2—N3113.68 (16)
C1—N1—C3—C2−3.19 (14)N1—C1—C2—C3−3.07 (14)
O6—N4—C7—C6175.89 (19)C4—C9—C8—C7−2.9 (3)
O5—N4—C7—C6−3.2 (3)N5—C9—C8—C7171.93 (16)
O6—N4—C7—C8−4.3 (3)C6—C7—C8—C9−1.1 (3)
O5—N4—C7—C8176.56 (19)N4—C7—C8—C9179.16 (17)
C8—C7—C6—C52.7 (3)C7—C6—C5—C4−0.4 (3)
N4—C7—C6—C5−177.53 (18)N1—C4—C5—C6176.83 (18)
O1—N2—C2—N390.61 (19)C9—C4—C5—C6−3.2 (3)
O2—N2—C2—N3−88.97 (19)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2691).

References

  • Archibald, T. G., Gilardi, R., Baum, K. & George, C. (1990). J. Org. Chem. 55, 2920–2924.
  • Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Frumkin, A. E., Churakov, A. M., Strelenko, Y. A., Kachala, V. V. & Tartakkovsky, V. A. (1999). Org. Lett. 1, 721–724. [PubMed]
  • Gao, R., Ma, H. X., Yan, B., Song, J. R. & Wang, Y. H. (2009). Chem. J. Chin. Univ. 30, 577–582.
  • Hiskey, M. A. & Coburn, M. D. (1994a). US Patent No. 5 336 784.
  • Hiskey, M. A. & Coburn, M. D. (1994b). Chem. Abstr. 121, 300750s.
  • Hiskey, M. A., Coburn, M. D., Mitchell, M. A. & Benicewicz, B. C. (1992). J. Heterocycl. Chem. 29, 1855–1856.
  • Hiskey, M. A., Stincipher, M. M. & Brown, J. E. (1993). J. Energ. Mater. 11, 157–165.
  • Ma, H. X., Yan, B., Li, Z. N., Guan, Y. L., Song, J. R., Xu, K. Z. & Hu, R. Z. (2009a). J. Hazard. Mater. 169, 1068–1073. [PubMed]
  • Ma, H. X., Yan, B., Li, Z. N., Song, J. R. & Hu, R. Z. (2009b). J. Therm. Anal. Calorim. 95, 437–444.
  • Ma, H. X., Yan, B., Song, J. R., Lü, X. Q. & Wang, L. J. (2009c). Chem. J. Chin. Univ. 30, 371–381.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography