PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): m1669–m1670.
Published online 2009 November 25. doi:  10.1107/S1600536809049666
PMCID: PMC2971818

(2,2′-Bipyrid­yl)bis­[N-(2-hydroxy­ethyl)-N-n-propyl­dithio­carbamato-κ2 S,S′]cadmium(II) acetonitrile solvate

Abstract

The title complex, [Cd(C6H12NOS2)2(C10H8N2)]·CH3CN, features a distorted octa­hedral N2S4 geometry for the CdII centre defined by a pair of asymmetrically chelating dithio­carbamate ligands as well as a 2,2′-bipyridine ligand. Supra­molecular chains along [001] are formed in the crystal structure, mediated by O—H(...)S hydrogen bonds; the acetonitrile solvent mol­ecules are associated with the chains via O—H(...)N hydrogen bonds.

Related literature

For background to supra­molecular polymers of zinc-triad 1,1-dithiol­ates, see: Tiekink (2003 [triangle]); Lai et al. (2002 [triangle]); Chen et al. (2006 [triangle]); Benson et al. (2007 [triangle]). For the synthesis, see: Lai & Tiekink (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1669-scheme1.jpg

Experimental

Crystal data

  • [Cd(C6H12NOS2)2(C10H8N2)]·C2H3N
  • M r = 666.21
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1669-efi1.jpg
  • a = 7.3277 (7) Å
  • b = 23.822 (2) Å
  • c = 17.1159 (18) Å
  • β = 99.786 (1)°
  • V = 2944.2 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.06 mm−1
  • T = 98 K
  • 0.36 × 0.22 × 0.11 mm

Data collection

  • Rigaku AFC12K/SATURN724 diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.828, T max = 1
  • 18201 measured reflections
  • 6043 independent reflections
  • 5711 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030
  • wR(F 2) = 0.080
  • S = 1.09
  • 6043 reflections
  • 331 parameters
  • 2 restraints
  • H-atom parameters constrained
  • Δρmax = 0.70 e Å−3
  • Δρmin = −0.69 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: PATTY in DIRDIF92 (Beurskens et al., 1992 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPII (Johnson, 1976 [triangle]) and DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2009 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809049666/hb5240sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809049666/hb5240Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Crystal engineering studies on the zinc-triad 1,1-dithiolates have generated 1-D, 2-D and 3-D architectures (Lai et al., 2002; Tiekink, 2003; Chen et al., 2006), in particular with dithiocarbamate ligands functionalized with hydrogen-bonding capacity (Benson et al., 2007). As a continuation of studies in this field, the structure of the title compound, (I), was investigated.

The molecular structure of (I) features a hexa-coordinated CdII centre defined by two asymmetrically chelating dithiocarbamate ligands (Cd–S1, S2 = 2.5872 (7) and 2.7816 (7) Å, and Cd–S3, S4 = 2.6539 (7) and 2.6704 (7) Å) and a chelating 2,2'-bipyridyl ligand (Cd–N3, N4 = 2.361 (2), 2.406 (2) Å). The resulting N2S4 donor set defines a distorted octahedral geometry.

The crystal packing is dominated by O–H···O and O–H···N hydrogen bonds, Table 1. The latter involve the O1-hydroxyl group and the nitrile-N5 atom of the solvent acetonitrile molecule. The O2-hydroxyl group forms hydrogen bonds with the dithiocarbamate-S2 atom to generate a supramolecular chain along [0 0 1], Table 1 and Fig. 2.

Experimental

Compound (I) was prepared following the standard literature procedure from the reaction of Cd[S2CN(CH2CH2OH)(n-Pr)]2 and 2,2'-bipyridyl (Lai & Tiekink, 2004). Colourless crystals were obtained from the slow evaporation of an acetonitrile solution of (I). IR (KBr, cm-1): 1471 (m) ν(C=N); 1183 (s) ν(C—S).

Refinement

C-bound H-atoms were placed in calculated positions (C–H 0.95–0.99 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2Ueq(C). A rotating group model was used for the methyl groups. The O-bound H-atoms were located in a difference Fourier map and each refined with an O–H restraint of 0.840±0.001 Å, and with Uiso(H) = 1.5Ueq(carrier atom).

Figures

Fig. 1.
Molecular structure of (I) showing displacement ellipsoids at the 50% probability level. The O–H···N hydrogen bond is shown as a dashed line.
Fig. 2.
Supramolecular chain in (I) mediated by O–H···S (green dashed lines) hydrogen bonds. The solvent acetonitrile molecules are connected by O–H···N hydrogen bonds (orange dashed lines). Hydrogen ...

Crystal data

[Cd(C6H12NOS2)2(C10H8N2)]·C2H3NF(000) = 1368
Mr = 666.21Dx = 1.503 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 18141 reflections
a = 7.3277 (7) Åθ = 2.1–40.6°
b = 23.822 (2) ŵ = 1.06 mm1
c = 17.1159 (18) ÅT = 98 K
β = 99.786 (1)°Block, colourless
V = 2944.2 (5) Å30.36 × 0.22 × 0.11 mm
Z = 4

Data collection

Rigaku AFC12K/SATURN724 diffractometer6043 independent reflections
Radiation source: fine-focus sealed tube5711 reflections with I > 2σ(I)
graphiteRint = 0.027
ω scansθmax = 26.5°, θmin = 2.1°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)h = −9→9
Tmin = 0.828, Tmax = 1k = −25→29
18201 measured reflectionsl = −21→21

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H-atom parameters constrained
S = 1.09w = 1/[σ2(Fo2) + (0.0396P)2 + 3.165P] where P = (Fo2 + 2Fc2)/3
6043 reflections(Δ/σ)max = 0.004
331 parametersΔρmax = 0.70 e Å3
2 restraintsΔρmin = −0.69 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cd0.22264 (2)0.757722 (7)0.046853 (9)0.01758 (7)
S10.17585 (8)0.85953 (3)0.09227 (3)0.01984 (13)
S20.54757 (9)0.82033 (3)0.06550 (4)0.02253 (13)
S30.35255 (9)0.69177 (3)0.16861 (4)0.02338 (14)
S4−0.04308 (9)0.69484 (3)0.09167 (3)0.02234 (13)
O10.7384 (3)0.95516 (8)0.26074 (11)0.0274 (4)
H1O0.80840.94650.30310.041*
O20.4126 (3)0.60342 (9)0.39861 (11)0.0356 (5)
H2O0.44710.62050.44150.053*
N10.4822 (3)0.92222 (9)0.11936 (11)0.0184 (4)
N20.0887 (3)0.62810 (9)0.21271 (12)0.0215 (4)
N30.3447 (3)0.70592 (9)−0.04998 (12)0.0205 (4)
N40.0208 (3)0.76057 (8)−0.07961 (12)0.0177 (4)
N50.9711 (4)0.93255 (13)0.41198 (16)0.0471 (8)
C10.4102 (3)0.87219 (10)0.09512 (13)0.0183 (5)
C20.6792 (3)0.93562 (11)0.12198 (14)0.0212 (5)
H2A0.69180.97620.11160.025*
H2B0.72580.91460.07950.025*
C30.7967 (4)0.92111 (12)0.20105 (15)0.0250 (5)
H3A0.78180.88090.21320.030*
H3B0.92900.92820.19910.030*
C40.3645 (3)0.96886 (10)0.13808 (13)0.0195 (5)
H4A0.43970.99480.17580.023*
H4B0.26400.95380.16400.023*
C50.2802 (4)1.00116 (11)0.06364 (14)0.0218 (5)
H5A0.38061.01750.03880.026*
H5B0.20860.97500.02510.026*
C60.1535 (4)1.04789 (12)0.08326 (16)0.0263 (5)
H6A0.10141.06800.03460.039*
H6B0.22481.07410.12070.039*
H6C0.05301.03170.10710.039*
C70.1289 (3)0.66779 (11)0.16308 (14)0.0198 (5)
C80.2339 (4)0.60092 (11)0.27098 (14)0.0227 (5)
H8A0.35150.60030.24980.027*
H8B0.19770.56160.27920.027*
C90.2634 (4)0.63157 (12)0.34969 (14)0.0241 (5)
H9A0.29520.67140.34240.029*
H9B0.15000.63000.37390.029*
C10−0.1000 (4)0.60685 (11)0.21058 (15)0.0232 (5)
H10A−0.18950.63730.19300.028*
H10B−0.11550.59560.26480.028*
C11−0.1435 (4)0.55671 (12)0.15499 (17)0.0293 (6)
H11A−0.13190.56800.10040.035*
H11B−0.05300.52640.17170.035*
C12−0.3363 (4)0.53524 (15)0.15584 (18)0.0370 (7)
H12A−0.36120.50320.11980.056*
H12B−0.42610.56510.13860.056*
H12C−0.34720.52350.20970.056*
C13−0.1430 (3)0.78695 (11)−0.09045 (15)0.0223 (5)
H13−0.17660.8074−0.04740.027*
C14−0.2656 (4)0.78577 (12)−0.16151 (16)0.0267 (6)
H14−0.38050.8051−0.16720.032*
C15−0.2165 (4)0.75569 (11)−0.22421 (16)0.0267 (6)
H15−0.29780.7540−0.27370.032*
C16−0.0475 (4)0.72821 (11)−0.21382 (14)0.0230 (5)
H16−0.01070.7078−0.25620.028*
C170.0676 (3)0.73098 (10)−0.14026 (14)0.0179 (5)
C180.2499 (3)0.70174 (10)−0.12429 (14)0.0193 (5)
C190.5105 (4)0.68052 (12)−0.03162 (16)0.0274 (6)
H190.57750.68420.02070.033*
C200.5869 (4)0.64932 (13)−0.08592 (18)0.0342 (6)
H200.70390.6316−0.07140.041*
C210.4884 (4)0.64455 (14)−0.16209 (18)0.0370 (7)
H210.53710.6231−0.20060.044*
C220.3192 (4)0.67099 (12)−0.18219 (16)0.0286 (6)
H220.25110.6683−0.23450.034*
C231.0929 (4)0.93296 (12)0.46333 (17)0.0319 (6)
C241.2471 (4)0.93447 (15)0.52810 (18)0.0371 (7)
H24A1.20180.92980.57840.056*
H24B1.31110.97060.52800.056*
H24C1.33330.90400.52190.056*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cd0.01970 (10)0.01859 (11)0.01415 (10)−0.00001 (6)0.00205 (7)−0.00045 (6)
S10.0183 (3)0.0203 (3)0.0206 (3)0.0005 (2)0.0026 (2)−0.0025 (2)
S20.0221 (3)0.0212 (3)0.0254 (3)0.0018 (2)0.0072 (2)−0.0035 (2)
S30.0212 (3)0.0273 (3)0.0199 (3)−0.0013 (2)−0.0016 (2)0.0036 (2)
S40.0203 (3)0.0270 (3)0.0190 (3)−0.0008 (2)0.0012 (2)0.0055 (2)
O10.0331 (11)0.0274 (10)0.0200 (9)−0.0029 (8)−0.0002 (7)−0.0002 (7)
O20.0453 (12)0.0394 (12)0.0185 (9)0.0197 (10)−0.0048 (8)−0.0023 (8)
N10.0191 (10)0.0201 (11)0.0160 (9)0.0003 (8)0.0036 (7)−0.0002 (7)
N20.0249 (11)0.0221 (11)0.0173 (10)0.0020 (8)0.0032 (8)0.0022 (8)
N30.0193 (10)0.0221 (11)0.0201 (10)−0.0003 (8)0.0033 (8)−0.0016 (8)
N40.0209 (10)0.0146 (10)0.0177 (10)0.0002 (8)0.0035 (8)0.0016 (7)
N50.0482 (17)0.0513 (18)0.0362 (14)−0.0215 (14)−0.0089 (12)0.0155 (12)
C10.0203 (12)0.0222 (13)0.0122 (10)0.0008 (9)0.0025 (8)0.0015 (8)
C20.0206 (12)0.0237 (13)0.0200 (11)−0.0041 (10)0.0058 (9)0.0008 (9)
C30.0217 (13)0.0285 (14)0.0244 (13)−0.0020 (10)0.0030 (10)0.0030 (10)
C40.0222 (12)0.0192 (12)0.0174 (11)−0.0006 (9)0.0042 (9)−0.0033 (9)
C50.0239 (12)0.0223 (13)0.0190 (11)0.0004 (10)0.0034 (9)−0.0016 (9)
C60.0260 (13)0.0255 (14)0.0287 (13)0.0059 (10)0.0082 (10)0.0010 (10)
C70.0228 (12)0.0204 (13)0.0161 (11)0.0012 (9)0.0036 (9)−0.0015 (9)
C80.0297 (13)0.0191 (13)0.0191 (11)0.0073 (10)0.0041 (10)0.0011 (9)
C90.0288 (13)0.0252 (14)0.0184 (11)0.0071 (10)0.0042 (10)0.0003 (9)
C100.0273 (13)0.0235 (13)0.0202 (11)−0.0002 (10)0.0077 (9)0.0021 (9)
C110.0292 (14)0.0274 (15)0.0317 (14)−0.0008 (11)0.0064 (11)−0.0028 (11)
C120.0318 (16)0.0453 (19)0.0338 (15)−0.0093 (13)0.0051 (12)−0.0038 (13)
C130.0211 (12)0.0233 (14)0.0234 (12)0.0031 (10)0.0064 (9)0.0023 (9)
C140.0233 (13)0.0287 (15)0.0273 (13)0.0044 (10)0.0013 (10)0.0061 (10)
C150.0285 (14)0.0263 (14)0.0227 (13)−0.0028 (10)−0.0032 (11)0.0037 (10)
C160.0286 (14)0.0233 (13)0.0166 (11)−0.0040 (10)0.0021 (10)−0.0001 (9)
C170.0184 (12)0.0192 (12)0.0167 (11)−0.0038 (9)0.0047 (9)0.0006 (9)
C180.0214 (12)0.0192 (12)0.0180 (11)−0.0002 (9)0.0052 (9)−0.0007 (9)
C190.0198 (12)0.0322 (15)0.0293 (13)0.0055 (11)0.0017 (10)0.0006 (11)
C200.0232 (14)0.0375 (17)0.0433 (17)0.0086 (12)0.0099 (12)0.0007 (13)
C210.0359 (16)0.0408 (18)0.0381 (16)0.0100 (13)0.0171 (13)−0.0078 (13)
C220.0315 (14)0.0320 (16)0.0238 (13)0.0009 (11)0.0087 (11)−0.0069 (11)
C230.0374 (16)0.0254 (15)0.0330 (15)−0.0055 (12)0.0062 (12)0.0069 (11)
C240.0341 (16)0.0395 (18)0.0361 (16)0.0007 (13)0.0013 (12)0.0090 (13)

Geometric parameters (Å, °)

Cd—N32.361 (2)C6—H6B0.9800
Cd—N42.406 (2)C6—H6C0.9800
Cd—S12.5872 (7)C8—C91.515 (3)
Cd—S32.6539 (7)C8—H8A0.9900
Cd—S42.6704 (7)C8—H8B0.9900
Cd—S22.7816 (7)C9—H9A0.9900
S1—C11.736 (2)C9—H9B0.9900
S2—C11.723 (2)C10—C111.527 (4)
S3—C71.723 (3)C10—H10A0.9900
S4—C71.724 (2)C10—H10B0.9900
O1—C31.426 (3)C11—C121.505 (4)
O1—H1O0.8400C11—H11A0.9900
O2—C91.427 (3)C11—H11B0.9900
O2—H2O0.8400C12—H12A0.9800
N1—C11.340 (3)C12—H12B0.9800
N1—C21.472 (3)C12—H12C0.9800
N1—C41.475 (3)C13—C141.384 (4)
N2—C71.337 (3)C13—H130.9500
N2—C101.467 (3)C14—C151.388 (4)
N2—C81.478 (3)C14—H140.9500
N3—C191.345 (3)C15—C161.385 (4)
N3—C181.345 (3)C15—H150.9500
N4—C131.340 (3)C16—C171.393 (3)
N4—C171.346 (3)C16—H160.9500
N5—C231.141 (4)C17—C181.490 (3)
C2—C31.515 (3)C18—C221.395 (3)
C2—H2A0.9900C19—C201.381 (4)
C2—H2B0.9900C19—H190.9500
C3—H3A0.9900C20—C211.383 (4)
C3—H3B0.9900C20—H200.9500
C4—C51.526 (3)C21—C221.381 (4)
C4—H4A0.9900C21—H210.9500
C4—H4B0.9900C22—H220.9500
C5—C61.523 (3)C23—C241.443 (4)
C5—H5A0.9900C24—H24A0.9800
C5—H5B0.9900C24—H24B0.9800
C6—H6A0.9800C24—H24C0.9800
N3—Cd—N468.37 (7)S3—C7—S4119.26 (14)
N3—Cd—S1141.84 (5)N2—C8—C9111.5 (2)
N4—Cd—S198.70 (5)N2—C8—H8A109.3
N3—Cd—S396.53 (5)C9—C8—H8A109.3
N4—Cd—S3143.78 (5)N2—C8—H8B109.3
S1—Cd—S3111.54 (2)C9—C8—H8B109.3
N3—Cd—S4106.87 (5)H8A—C8—H8B108.0
N4—Cd—S484.70 (5)O2—C9—C8105.9 (2)
S1—Cd—S4107.40 (2)O2—C9—H9A110.5
S3—Cd—S467.92 (2)C8—C9—H9A110.6
N3—Cd—S286.66 (5)O2—C9—H9B110.5
N4—Cd—S2118.12 (5)C8—C9—H9B110.5
S1—Cd—S267.51 (2)H9A—C9—H9B108.7
S3—Cd—S292.38 (2)N2—C10—C11112.4 (2)
S4—Cd—S2156.855 (19)N2—C10—H10A109.1
C1—S1—Cd89.45 (8)C11—C10—H10A109.1
C1—S2—Cd83.49 (9)N2—C10—H10B109.1
C7—S3—Cd86.69 (8)C11—C10—H10B109.1
C7—S4—Cd86.13 (9)H10A—C10—H10B107.9
C3—O1—H1O105.4C12—C11—C10110.9 (2)
C9—O2—H2O111.9C12—C11—H11A109.5
C1—N1—C2122.3 (2)C10—C11—H11A109.5
C1—N1—C4121.6 (2)C12—C11—H11B109.5
C2—N1—C4115.9 (2)C10—C11—H11B109.5
C7—N2—C10122.5 (2)H11A—C11—H11B108.0
C7—N2—C8121.8 (2)C11—C12—H12A109.5
C10—N2—C8115.6 (2)C11—C12—H12B109.5
C19—N3—C18119.2 (2)H12A—C12—H12B109.5
C19—N3—Cd120.38 (17)C11—C12—H12C109.5
C18—N3—Cd120.40 (16)H12A—C12—H12C109.5
C13—N4—C17118.6 (2)H12B—C12—H12C109.5
C13—N4—Cd122.48 (16)N4—C13—C14123.0 (2)
C17—N4—Cd118.74 (16)N4—C13—H13118.5
N1—C1—S2120.62 (18)C14—C13—H13118.5
N1—C1—S1119.92 (18)C13—C14—C15118.4 (2)
S2—C1—S1119.46 (14)C13—C14—H14120.8
N1—C2—C3112.5 (2)C15—C14—H14120.8
N1—C2—H2A109.1C16—C15—C14119.2 (2)
C3—C2—H2A109.1C16—C15—H15120.4
N1—C2—H2B109.1C14—C15—H15120.4
C3—C2—H2B109.1C15—C16—C17119.0 (2)
H2A—C2—H2B107.8C15—C16—H16120.5
O1—C3—C2108.4 (2)C17—C16—H16120.5
O1—C3—H3A110.0N4—C17—C16121.8 (2)
C2—C3—H3A110.0N4—C17—C18116.2 (2)
O1—C3—H3B110.0C16—C17—C18122.0 (2)
C2—C3—H3B110.0N3—C18—C22121.2 (2)
H3A—C3—H3B108.4N3—C18—C17116.2 (2)
N1—C4—C5111.54 (19)C22—C18—C17122.6 (2)
N1—C4—H4A109.3N3—C19—C20122.6 (3)
C5—C4—H4A109.3N3—C19—H19118.7
N1—C4—H4B109.3C20—C19—H19118.7
C5—C4—H4B109.3C19—C20—C21118.2 (3)
H4A—C4—H4B108.0C19—C20—H20120.9
C6—C5—C4111.1 (2)C21—C20—H20120.9
C6—C5—H5A109.4C22—C21—C20120.0 (3)
C4—C5—H5A109.4C22—C21—H21120.0
C6—C5—H5B109.4C20—C21—H21120.0
C4—C5—H5B109.4C21—C22—C18118.8 (3)
H5A—C5—H5B108.0C21—C22—H22120.6
C5—C6—H6A109.5C18—C22—H22120.6
C5—C6—H6B109.5N5—C23—C24179.1 (3)
H6A—C6—H6B109.5C23—C24—H24A109.5
C5—C6—H6C109.5C23—C24—H24B109.5
H6A—C6—H6C109.5H24A—C24—H24B109.5
H6B—C6—H6C109.5C23—C24—H24C109.5
N2—C7—S3120.65 (19)H24A—C24—H24C109.5
N2—C7—S4120.09 (19)H24B—C24—H24C109.5
N3—Cd—S1—C1−52.88 (11)Cd—S1—C1—S23.16 (13)
N4—Cd—S1—C1−118.76 (9)C1—N1—C2—C3−90.2 (3)
S3—Cd—S1—C181.54 (8)C4—N1—C2—C395.2 (3)
S4—Cd—S1—C1154.10 (8)N1—C2—C3—O1−63.7 (3)
S2—Cd—S1—C1−1.85 (7)C1—N1—C4—C5−83.9 (3)
N3—Cd—S2—C1153.10 (9)C2—N1—C4—C590.8 (2)
N4—Cd—S2—C189.84 (9)N1—C4—C5—C6177.9 (2)
S1—Cd—S2—C11.87 (8)C10—N2—C7—S3179.42 (18)
S3—Cd—S2—C1−110.49 (8)C8—N2—C7—S3−3.5 (3)
S4—Cd—S2—C1−79.80 (9)C10—N2—C7—S4−1.5 (3)
N3—Cd—S3—C7−105.50 (10)C8—N2—C7—S4175.58 (18)
N4—Cd—S3—C7−43.64 (12)Cd—S3—C7—N2178.9 (2)
S1—Cd—S3—C7100.87 (8)Cd—S3—C7—S4−0.15 (14)
S4—Cd—S3—C70.09 (8)Cd—S4—C7—N2−178.9 (2)
S2—Cd—S3—C7167.59 (8)Cd—S4—C7—S30.15 (13)
N3—Cd—S4—C790.20 (10)C7—N2—C8—C991.3 (3)
N4—Cd—S4—C7155.69 (10)C10—N2—C8—C9−91.5 (3)
S1—Cd—S4—C7−106.83 (8)N2—C8—C9—O2−176.7 (2)
S3—Cd—S4—C7−0.09 (8)C7—N2—C10—C1189.8 (3)
S2—Cd—S4—C7−33.49 (10)C8—N2—C10—C11−87.4 (3)
N4—Cd—N3—C19178.4 (2)N2—C10—C11—C12178.6 (2)
S1—Cd—N3—C19102.4 (2)C17—N4—C13—C14−0.8 (4)
S3—Cd—N3—C19−35.7 (2)Cd—N4—C13—C14−175.62 (19)
S4—Cd—N3—C19−104.5 (2)N4—C13—C14—C150.2 (4)
S2—Cd—N3—C1956.3 (2)C13—C14—C15—C16−0.2 (4)
N4—Cd—N3—C18−1.17 (17)C14—C15—C16—C170.8 (4)
S1—Cd—N3—C18−77.2 (2)C13—N4—C17—C161.4 (4)
S3—Cd—N3—C18144.74 (18)Cd—N4—C17—C16176.40 (18)
S4—Cd—N3—C1875.88 (18)C13—N4—C17—C18−179.0 (2)
S2—Cd—N3—C18−123.25 (18)Cd—N4—C17—C18−4.0 (3)
N3—Cd—N4—C13177.6 (2)C15—C16—C17—N4−1.4 (4)
S1—Cd—N4—C13−39.79 (19)C15—C16—C17—C18179.0 (2)
S3—Cd—N4—C13107.09 (19)C19—N3—C18—C220.9 (4)
S4—Cd—N4—C1367.05 (19)Cd—N3—C18—C22−179.6 (2)
S2—Cd—N4—C13−108.88 (19)C19—N3—C18—C17−179.9 (2)
N3—Cd—N4—C172.78 (17)Cd—N3—C18—C17−0.3 (3)
S1—Cd—N4—C17145.43 (16)N4—C17—C18—N32.9 (3)
S3—Cd—N4—C17−67.7 (2)C16—C17—C18—N3−177.5 (2)
S4—Cd—N4—C17−107.73 (17)N4—C17—C18—C22−177.9 (2)
S2—Cd—N4—C1776.34 (18)C16—C17—C18—C221.7 (4)
C2—N1—C1—S20.1 (3)C18—N3—C19—C20−1.0 (4)
C4—N1—C1—S2174.40 (16)Cd—N3—C19—C20179.4 (2)
C2—N1—C1—S1−179.15 (17)N3—C19—C20—C210.4 (5)
C4—N1—C1—S1−4.8 (3)C19—C20—C21—C220.5 (5)
Cd—S2—C1—N1177.82 (19)C20—C21—C22—C18−0.7 (5)
Cd—S2—C1—S1−2.96 (12)N3—C18—C22—C210.0 (4)
Cd—S1—C1—N1−177.61 (18)C17—C18—C22—C21−179.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1o···N50.842.062.898 (3)174
O2—H2o···S2i0.842.553.388 (2)175

Symmetry codes: (i) x, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5240).

References

  • Benson, R. E., Ellis, C. A., Lewis, C. E. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 930–940.
  • Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). The DIRDIF Program System. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.
  • Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  • Chen, D., Lai, C. S. & Tiekink, E. R. T. (2006). CrystEngComm, 8, 51–58.
  • Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
  • Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  • Lai, C. S., Lim, Y. X., Yap, T. C. & Tiekink, E. R. T. (2002). CrystEngComm, 4, 596–600.
  • Lai, C. S. & Tiekink, E. R. T. (2004). CrystEngComm, 6, 593–605.
  • Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tiekink, E. R. T. (2003). CrystEngComm, 5, 101–113.
  • Westrip, S. P. (2009). publCIF. In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography