PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): m1663.
Published online 2009 November 25. doi:  10.1107/S1600536809049551
PMCID: PMC2971815

[(Z)-N-(3-Chloro­phen­yl)-O-ethyl­thio­carbamato-κS](triphenyl­phosphine-κP)gold(I)

Abstract

The title compound, [Au(C9H9ClNOS)(C18H15P)], reveals a near linear geometry for the Au atom defined by a S,P-donor set [S—Au—P = 175.86 (3)°]. The deviation from linearity is ascribed to the proximate O atom derived from the thio­carbamato anion [Au(...)O = 2.967 (3) Å].

Related literature

For structural systematics and luminescence properties of phosphinegold(I) carbonimidothio­ates, see: Ho et al. (2006 [triangle]); Ho & Tiekink (2007 [triangle]); Kuan et al. (2008 [triangle]). For the synthesis, see: Hall et al. (1993 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1663-scheme1.jpg

Experimental

Crystal data

  • [Au(C9H9ClNOS)(C18H15P)]
  • M r = 673.92
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1663-efi1.jpg
  • a = 8.7561 (4) Å
  • b = 12.3514 (6) Å
  • c = 13.0432 (6) Å
  • α = 110.076 (1)°
  • β = 105.289 (1)°
  • γ = 97.481 (1)°
  • V = 1239.52 (10) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 6.21 mm−1
  • T = 223 K
  • 0.11 × 0.10 × 0.05 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.620, T max = 1
  • 10396 measured reflections
  • 5662 independent reflections
  • 5184 reflections with I > 2σ(I)
  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.027
  • wR(F 2) = 0.065
  • S = 1.03
  • 5662 reflections
  • 298 parameters
  • H-atom parameters constrained
  • Δρmax = 1.79 e Å−3
  • Δρmin = −0.51 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to solve structure: PATTY in DIRDIF92 (Beurskens et al., 1992 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2009 [triangle]).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809049551/ci2966sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809049551/ci2966Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The National University of Singapore (grant No. R-143-000-213-112) is thanked for support.

supplementary crystallographic information

Comment

Systematic studies of phosphinegold(I) thiocarbamides (Ho et al. 2006; Ho & Tiekink, 2007; Kuan et al., 2008), have been motivated by delineating crystal packing characteristics of these compounds, e.g. the propensity to form aurophilic (Au···Au) interactions, as well as examining their luminescence characteristics. The title compound, (C5H5)3PAu[SC(OEt)N(C6H4Cl-o)], was synthesized during the course of these studies.

The thiocarbamato anion functions as a thiolate ligand as seen in the magnitudes of the C1—S1 and C1═N1 bond distances of 1.759 (4) and 1.265 (4) Å, respectively; the conformation about the C1═N1 double bond is Z. The central SC(O)N chromophore is planar as seen in the S1–C1–N1–C2 and O1–C1–N1–C2 torsion angles of 2.0 (5) and -179.7 (3) °, respectively. The N-bound aryl ring is twisted out of this plane as seen in the C1–N1–C2–C3 torsion angle of 60.1 (5)°. The thiocarbamato and phosphine ligands define a S,P donor set. The deviation of the S1—Au—P1 angle [175.86 (3)°] from linearity is ascribed to the close approach of the O1 atom [2.967 (3) Å] to Au.

The crystal structure is dominated by π···π and C—H···π interactions. Centrosymmetrically related C16–C21 rings form π···π contacts: the Cg···Cgi distance is 3.534 (2) Å; symmetry code (i) 1 - x, -y, -z. Two short C—H···π contacts are also noted, viz. C7—H7···Cg(C22—C27)ii = 2.77 Å, C7···Cg(C22—C27)ii = 3.630 (5) Å with an angle at H7 = 152 °; and C26—H26···Cg(C10—C15)iii = 2.68 Å, C26···Cg(C10—C15)iii = 3.560 (4) Å with an angle at H26 = 156 °; symmetry codes (ii) -x, 1 - y, -z; (iii) -x, -y, -1 - z.

Experimental

The title compound was prepared following the standard literature procedure from the reaction of Ph3AuCl and EtOC(S)N(H)(C6H4Cl-o) in the presence of base (Hall et al., 1993).

Refinement

The H atoms were geometrically placed (C-H = 0.94–0.98 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). A rotating group model was used for the methyl group. The maximum and minimum residual electron density peaks of 1.79 and 0.51 e Å-3, respectively, were located 0.85 Å and 1.44 Å from the Au atom.

Figures

Fig. 1.
The molecular structure of the title compound, showing atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Crystal data

[Au(C9H9ClNOS)(C18H15P)]Z = 2
Mr = 673.92F(000) = 656
Triclinic, P1Dx = 1.806 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 8.7561 (4) ÅCell parameters from 5349 reflections
b = 12.3514 (6) Åθ = 2.5–29.7°
c = 13.0432 (6) ŵ = 6.21 mm1
α = 110.076 (1)°T = 223 K
β = 105.289 (1)°Block, colourless
γ = 97.481 (1)°0.11 × 0.10 × 0.05 mm
V = 1239.52 (10) Å3

Data collection

Bruker SMART CCD area-detector diffractometer5662 independent reflections
Radiation source: fine-focus sealed tube5184 reflections with I > 2σ(I)
graphiteRint = 0.022
ω scansθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2000)h = −11→11
Tmin = 0.620, Tmax = 1k = −14→16
10396 measured reflectionsl = −16→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.0376P)2] where P = (Fo2 + 2Fc2)/3
5662 reflections(Δ/σ)max = 0.001
298 parametersΔρmax = 1.79 e Å3
0 restraintsΔρmin = −0.51 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Au0.129193 (15)0.238137 (11)0.027706 (10)0.02816 (5)
Cl0.38116 (14)0.55776 (11)0.65290 (9)0.0512 (3)
S10.15605 (12)0.37252 (8)0.20892 (7)0.0345 (2)
P10.10947 (10)0.09758 (8)−0.14385 (7)0.02494 (17)
O10.2140 (3)0.4991 (2)0.0947 (2)0.0326 (5)
N10.1960 (4)0.6110 (3)0.2686 (3)0.0331 (7)
C10.1923 (4)0.5102 (3)0.1967 (3)0.0303 (7)
C20.1738 (4)0.6210 (3)0.3749 (3)0.0312 (8)
C30.2780 (4)0.5892 (3)0.4543 (3)0.0336 (8)
H30.36650.55960.43840.040*
C40.2509 (4)0.6011 (3)0.5561 (3)0.0338 (8)
C50.1230 (5)0.6436 (4)0.5839 (3)0.0409 (9)
H50.10460.64900.65300.049*
C60.0223 (5)0.6783 (4)0.5051 (4)0.0459 (10)
H6−0.06470.70930.52220.055*
C70.0478 (5)0.6679 (4)0.4030 (3)0.0424 (9)
H7−0.02090.69290.35160.051*
C80.2069 (5)0.5990 (3)0.0607 (3)0.0362 (8)
H8A0.29210.66940.11780.043*
H8B0.10030.61800.05400.043*
C90.2333 (5)0.5609 (4)−0.0537 (4)0.0406 (9)
H9A0.22930.6245−0.08120.061*
H9B0.14860.4908−0.10890.061*
H9C0.33920.5426−0.04540.061*
C10−0.0985 (4)0.0188 (3)−0.2372 (3)0.0262 (7)
C11−0.1568 (4)−0.1021 (3)−0.2693 (3)0.0308 (7)
H11−0.0861−0.1468−0.24630.037*
C12−0.3194 (4)−0.1571 (4)−0.3353 (3)0.0379 (9)
H12−0.3587−0.2389−0.35640.045*
C13−0.4228 (4)−0.0924 (4)−0.3697 (3)0.0416 (10)
H13−0.5328−0.1299−0.41420.050*
C14−0.3654 (5)0.0279 (4)−0.3389 (3)0.0418 (9)
H14−0.43660.0718−0.36300.050*
C15−0.2039 (4)0.0843 (4)−0.2728 (3)0.0345 (8)
H15−0.16540.1661−0.25220.041*
C160.2160 (4)−0.0128 (3)−0.1206 (3)0.0255 (7)
C170.3041 (5)−0.0661 (3)−0.1893 (3)0.0373 (8)
H170.3025−0.0508−0.25530.045*
C180.3940 (5)−0.1415 (4)−0.1609 (4)0.0429 (9)
H180.4555−0.1759−0.20680.051*
C190.3949 (4)−0.1669 (3)−0.0666 (3)0.0374 (8)
H190.4568−0.2183−0.04780.045*
C200.3047 (5)−0.1168 (4)0.0007 (4)0.0413 (9)
H200.3031−0.13560.06450.050*
C210.2165 (4)−0.0390 (3)−0.0253 (3)0.0360 (8)
H210.1568−0.00380.02170.043*
C220.1982 (4)0.1559 (3)−0.2303 (3)0.0270 (7)
C230.3065 (4)0.2674 (3)−0.1774 (3)0.0306 (7)
H230.32970.3125−0.09820.037*
C240.3804 (4)0.3123 (3)−0.2411 (3)0.0354 (8)
H240.45280.3879−0.20530.042*
C250.3477 (4)0.2458 (4)−0.3569 (3)0.0369 (8)
H250.39890.2761−0.39970.044*
C260.2395 (4)0.1344 (4)−0.4110 (3)0.0341 (8)
H260.21770.0896−0.49010.041*
C270.1640 (4)0.0897 (3)−0.3484 (3)0.0320 (7)
H270.08970.0148−0.38510.038*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Au0.03676 (8)0.02413 (8)0.02236 (8)0.00739 (5)0.01005 (5)0.00752 (5)
Cl0.0597 (6)0.0573 (7)0.0413 (6)0.0284 (5)0.0125 (5)0.0232 (5)
S10.0550 (5)0.0237 (4)0.0238 (4)0.0093 (4)0.0137 (4)0.0079 (3)
P10.0299 (4)0.0239 (4)0.0207 (4)0.0058 (3)0.0096 (3)0.0079 (3)
O10.0441 (14)0.0262 (13)0.0291 (13)0.0099 (10)0.0136 (10)0.0109 (10)
N10.0367 (15)0.0286 (16)0.0304 (16)0.0084 (12)0.0098 (12)0.0081 (12)
C10.0289 (16)0.0289 (18)0.0291 (17)0.0059 (13)0.0054 (13)0.0103 (14)
C20.0325 (17)0.0243 (17)0.0290 (17)0.0047 (13)0.0094 (14)0.0027 (14)
C30.0323 (17)0.0282 (18)0.0333 (19)0.0090 (14)0.0080 (14)0.0054 (14)
C40.0368 (18)0.0289 (18)0.0277 (18)0.0087 (14)0.0043 (14)0.0065 (14)
C50.044 (2)0.047 (2)0.032 (2)0.0134 (18)0.0151 (16)0.0127 (17)
C60.040 (2)0.058 (3)0.040 (2)0.0272 (19)0.0174 (17)0.013 (2)
C70.043 (2)0.046 (2)0.035 (2)0.0221 (18)0.0096 (16)0.0107 (17)
C80.0394 (19)0.0261 (18)0.042 (2)0.0057 (15)0.0076 (16)0.0172 (16)
C90.051 (2)0.036 (2)0.043 (2)0.0110 (17)0.0185 (18)0.0225 (17)
C100.0280 (15)0.0312 (18)0.0196 (15)0.0065 (13)0.0126 (12)0.0070 (13)
C110.0346 (17)0.0335 (19)0.0272 (17)0.0055 (14)0.0125 (14)0.0147 (14)
C120.0345 (18)0.043 (2)0.0333 (19)−0.0013 (16)0.0128 (15)0.0140 (16)
C130.0273 (17)0.063 (3)0.032 (2)0.0043 (17)0.0120 (15)0.0154 (19)
C140.0369 (19)0.058 (3)0.038 (2)0.0227 (18)0.0159 (16)0.0200 (19)
C150.0400 (19)0.037 (2)0.0305 (18)0.0159 (16)0.0162 (15)0.0121 (15)
C160.0260 (15)0.0230 (16)0.0228 (15)0.0022 (12)0.0054 (12)0.0068 (12)
C170.051 (2)0.037 (2)0.036 (2)0.0180 (17)0.0224 (17)0.0182 (16)
C180.043 (2)0.042 (2)0.053 (2)0.0162 (17)0.0254 (18)0.0208 (19)
C190.0345 (18)0.0284 (19)0.047 (2)0.0068 (15)0.0077 (16)0.0161 (16)
C200.050 (2)0.043 (2)0.040 (2)0.0135 (18)0.0150 (17)0.0259 (18)
C210.0414 (19)0.038 (2)0.037 (2)0.0134 (16)0.0184 (16)0.0199 (16)
C220.0298 (16)0.0279 (17)0.0276 (16)0.0088 (13)0.0120 (13)0.0135 (13)
C230.0298 (16)0.0311 (18)0.0280 (17)0.0040 (14)0.0067 (13)0.0117 (14)
C240.0300 (17)0.033 (2)0.044 (2)0.0038 (14)0.0097 (15)0.0198 (16)
C250.0353 (18)0.049 (2)0.042 (2)0.0157 (16)0.0198 (16)0.0291 (18)
C260.0352 (18)0.045 (2)0.0271 (18)0.0139 (16)0.0155 (14)0.0152 (16)
C270.0335 (17)0.0342 (19)0.0305 (18)0.0086 (14)0.0129 (14)0.0135 (15)

Geometric parameters (Å, °)

Au—P12.2588 (8)C11—H110.94
Au—S12.3041 (9)C12—C131.370 (6)
Cl—C41.745 (4)C12—H120.94
S1—C11.759 (4)C13—C141.383 (6)
P1—C221.807 (3)C13—H130.94
P1—C161.813 (3)C14—C151.384 (5)
P1—C101.817 (3)C14—H140.94
O1—C11.356 (4)C15—H150.94
O1—C81.451 (4)C16—C171.386 (5)
N1—C11.265 (4)C16—C211.387 (5)
N1—C21.416 (5)C17—C181.378 (5)
C2—C71.386 (5)C17—H170.94
C2—C31.392 (5)C18—C191.368 (6)
C3—C41.372 (5)C18—H180.94
C3—H30.94C19—C201.377 (6)
C4—C51.377 (5)C19—H190.94
C5—C61.392 (6)C20—C211.384 (5)
C5—H50.94C20—H200.94
C6—C71.375 (6)C21—H210.94
C6—H60.94C22—C231.391 (5)
C7—H70.94C22—C271.400 (5)
C8—C91.494 (6)C23—C241.387 (5)
C8—H8A0.98C23—H230.94
C8—H8B0.98C24—C251.377 (5)
C9—H9A0.97C24—H240.94
C9—H9B0.97C25—C261.389 (6)
C9—H9C0.97C25—H250.94
C10—C111.387 (5)C26—C271.382 (5)
C10—C151.396 (5)C26—H260.94
C11—C121.390 (5)C27—H270.94
P1—Au—S1175.86 (3)C13—C12—C11120.2 (4)
C1—S1—Au103.15 (12)C13—C12—H12119.9
C22—P1—C16106.60 (15)C11—C12—H12119.9
C22—P1—C10104.86 (15)C12—C13—C14120.1 (4)
C16—P1—C10107.11 (15)C12—C13—H13120.0
C22—P1—Au113.34 (12)C14—C13—H13120.0
C16—P1—Au110.08 (11)C13—C14—C15120.5 (4)
C10—P1—Au114.33 (10)C13—C14—H14119.7
C1—O1—C8117.8 (3)C15—C14—H14119.7
C1—N1—C2119.6 (3)C14—C15—C10119.6 (4)
N1—C1—O1120.3 (3)C14—C15—H15120.2
N1—C1—S1127.7 (3)C10—C15—H15120.2
O1—C1—S1111.9 (2)C17—C16—C21119.1 (3)
C7—C2—C3118.6 (4)C17—C16—P1123.0 (3)
C7—C2—N1119.2 (3)C21—C16—P1117.7 (3)
C3—C2—N1122.2 (3)C18—C17—C16120.1 (4)
C4—C3—C2119.6 (3)C18—C17—H17120.0
C4—C3—H3120.2C16—C17—H17120.0
C2—C3—H3120.2C19—C18—C17120.8 (4)
C3—C4—C5122.6 (3)C19—C18—H18119.6
C3—C4—Cl118.6 (3)C17—C18—H18119.6
C5—C4—Cl118.7 (3)C18—C19—C20119.7 (4)
C4—C5—C6117.2 (4)C18—C19—H19120.1
C4—C5—H5121.4C20—C19—H19120.1
C6—C5—H5121.4C19—C20—C21120.2 (4)
C7—C6—C5121.2 (4)C19—C20—H20119.9
C7—C6—H6119.4C21—C20—H20119.9
C5—C6—H6119.4C20—C21—C16120.1 (3)
C6—C7—C2120.7 (4)C20—C21—H21119.9
C6—C7—H7119.6C16—C21—H21119.9
C2—C7—H7119.6C23—C22—C27119.4 (3)
O1—C8—C9105.7 (3)C23—C22—P1119.2 (3)
O1—C8—H8A110.6C27—C22—P1121.4 (3)
C9—C8—H8A110.6C24—C23—C22120.2 (3)
O1—C8—H8B110.6C24—C23—H23119.9
C9—C8—H8B110.6C22—C23—H23119.9
H8A—C8—H8B108.7C25—C24—C23120.0 (3)
C8—C9—H9A109.5C25—C24—H24120.0
C8—C9—H9B109.5C23—C24—H24120.0
H9A—C9—H9B109.5C24—C25—C26120.5 (3)
C8—C9—H9C109.5C24—C25—H25119.8
H9A—C9—H9C109.5C26—C25—H25119.8
H9B—C9—H9C109.5C27—C26—C25119.9 (3)
C11—C10—C15119.5 (3)C27—C26—H26120.0
C11—C10—P1122.3 (3)C25—C26—H26120.0
C15—C10—P1118.2 (3)C26—C27—C22120.0 (3)
C10—C11—C12120.2 (4)C26—C27—H27120.0
C10—C11—H11119.9C22—C27—H27120.0
C12—C11—H11119.9
C2—N1—C1—O1−179.7 (3)C11—C10—C15—C140.6 (5)
C2—N1—C1—S12.0 (5)P1—C10—C15—C14−176.6 (3)
C8—O1—C1—N1−12.7 (5)C22—P1—C16—C17−19.4 (3)
C8—O1—C1—S1165.9 (2)C10—P1—C16—C1792.4 (3)
Au—S1—C1—N1170.7 (3)Au—P1—C16—C17−142.7 (3)
Au—S1—C1—O1−7.7 (2)C22—P1—C16—C21156.6 (3)
C1—N1—C2—C7−122.2 (4)C10—P1—C16—C21−91.6 (3)
C1—N1—C2—C360.1 (5)Au—P1—C16—C2133.3 (3)
C7—C2—C3—C42.1 (5)C21—C16—C17—C18−1.7 (5)
N1—C2—C3—C4179.8 (3)P1—C16—C17—C18174.3 (3)
C2—C3—C4—C50.2 (6)C16—C17—C18—C191.4 (6)
C2—C3—C4—Cl178.8 (3)C17—C18—C19—C200.1 (6)
C3—C4—C5—C6−1.9 (6)C18—C19—C20—C21−1.5 (6)
Cl—C4—C5—C6179.5 (3)C19—C20—C21—C161.3 (6)
C4—C5—C6—C71.4 (7)C17—C16—C21—C200.3 (5)
C5—C6—C7—C20.8 (7)P1—C16—C21—C20−175.8 (3)
C3—C2—C7—C6−2.6 (6)C16—P1—C22—C23−103.6 (3)
N1—C2—C7—C6179.6 (4)C10—P1—C22—C23143.0 (3)
C1—O1—C8—C9−179.6 (3)Au—P1—C22—C2317.6 (3)
C22—P1—C10—C11119.2 (3)C16—P1—C22—C2774.4 (3)
C16—P1—C10—C116.1 (3)C10—P1—C22—C27−39.0 (3)
Au—P1—C10—C11−116.1 (3)Au—P1—C22—C27−164.4 (2)
C22—P1—C10—C15−63.8 (3)C27—C22—C23—C24−0.3 (5)
C16—P1—C10—C15−176.8 (3)P1—C22—C23—C24177.8 (3)
Au—P1—C10—C1561.0 (3)C22—C23—C24—C25−0.6 (5)
C15—C10—C11—C12−0.8 (5)C23—C24—C25—C260.7 (6)
P1—C10—C11—C12176.3 (3)C24—C25—C26—C270.0 (6)
C10—C11—C12—C130.4 (5)C25—C26—C27—C22−0.8 (5)
C11—C12—C13—C140.1 (6)C23—C22—C27—C261.0 (5)
C12—C13—C14—C15−0.3 (6)P1—C22—C27—C26−177.0 (3)
C13—C14—C15—C100.0 (6)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2966).

References

  • Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). The DIRDIF Program System. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.
  • Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  • Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Hall, V. J., Siasios, G. & Tiekink, E. R. T. (1993). Aust. J. Chem. 46, 561–570.
  • Ho, S. Y., Cheng, E. C.-C., Tiekink, E. R. T. & Yam, V. W.-W. (2006). Inorg. Chem. 45, 8165–8174. [PubMed]
  • Ho, S. Y. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 368–378.
  • Kuan, F. S., Ho, S. Y., Tadbuppa, P. P. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 548–564.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2009). publCIF. In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography