PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): o3239–o3240.
Published online 2009 November 28. doi:  10.1107/S1600536809050120
PMCID: PMC2971809

3-[(E)-(7-Chloro-4-quinol­yl)hydrazono­meth­yl]benzonitrile monohydrate

Abstract

The title monohydrate, C17H11ClN4·H2O, features an essentially planar organic mol­ecule, as seen in the dihedral angle of 2.42 (8)° formed between the quinoline and benzene planes. The conformation about the imine bond is E, and the N—H group is oriented towards the quinoline residue. The major feature of the crystal packing is the formation of supra­molecular chains along [100], whereby the water mol­ecule accepts one N—H(...)O hydrogen bond and makes two O—H(...)N hydrogen bonds. A C—H(...)O link is also present.

Related literature

For background information on the pharmacological activity of quinoline derivatives, see: Elslager et al. (1969 [triangle]); Font et al. (1997 [triangle]); Kaminsky & Meltzer (1968 [triangle]); Musiol et al. (2006 [triangle]); Nakamura et al. (1999 [triangle]); Palmer et al. (1993 [triangle]); Ridley (2002 [triangle]); Sloboda et al. (1991 [triangle]); Tanenbaum & Tuffanelli (1980 [triangle]); Warshakoon et al. (2006 [triangle]). For recent studies into quinoline-based anti-malarials, see: Andrade et al. (2007 [triangle]); Cunico et al. (2006 [triangle]); da Silva et al. (2003 [triangle]); de Souza et al. (2005 [triangle]). For a related crystallographic study on neutral species related to the title compound, see: Kaiser et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o3239-scheme1.jpg

Experimental

Crystal data

  • C17H11ClN4·H2O
  • M r = 324.76
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o3239-efi1.jpg
  • a = 8.7406 (2) Å
  • b = 9.8587 (3) Å
  • c = 10.2301 (2) Å
  • α = 110.8897 (15)°
  • β = 93.4341 (16)°
  • γ = 110.6766 (15)°
  • V = 752.93 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.26 mm−1
  • T = 120 K
  • 0.12 × 0.09 × 0.04 mm

Data collection

  • Nonius KappaCCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007 [triangle]) T min = 0.901, T max = 0.990
  • 14600 measured reflections
  • 3425 independent reflections
  • 2902 reflections with I > 2σ(I)
  • R int = 0.046

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.109
  • S = 1.10
  • 3425 reflections
  • 217 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.32 e Å−3
  • Δρmin = −0.25 e Å−3

Data collection: COLLECT (Hooft, 1998 [triangle]); cell refinement: DENZO (Otwinowski & Minor, 1997 [triangle]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809050120/hb5242sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809050120/hb5242Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil).

supplementary crystallographic information

Comment

The title compound, crystallized as a hydrate, (I), was prepared as part of an on-going investigation aimed at developing anti-malarial compounds based on the quinoline nucleus (Andrade et al.,2007; Cunico et al., 2006; da Silva et al., 2003; de Souza et al., 2005. The motivation for examining quinoline derivatives arises as the majority of anti-malarial drugs, such as chloroquine (Tanenbaum & Tuffanelli, 1980), mefloquine (Palmer et al., 1993), primaquine (Elslager et al., 1969) and amodiaquine (Ridley, 2002), possess a quinoline ring which has been the mainstay of malaria chemotherapy for much of the past 40 years (Font et al., 1997; Kaminsky & Meltzer, 1968; Musiol et al., 2006; Nakamura et al., 1999; Sloboda et al., 1991; Warshakoon et al., 2006).

The molecular structure of (I), Fig. 1, comprises an essentially planar quinoline framework with the maximum deviation from the least-squares plane through the non-hydrogen atoms being -0.012 (2) Å for atom C3. The planarity extends through the azo moiety (the C2–C3–N2–N3 and N2–N3–C10–C11 torsion angles are 2.4 (3) and -179.76 (16) °, respectively) into the terminal benzene; the dihedral angle formed between the quinoline and benzene rings is 2.42 (8) °. The conformation about the C10N3 bond is E. Finally, the amine-N2 group is oriented towards the quinoline nucleus as observed in related structures (Kaiser et al., (2009).

The water molecule of crystallization plays a pivotal role in the crystal packing. The water-H atoms form hydrogen bonds to the the pyridine-N1 and nitrile-N4 atoms, derived from different molecules, and at the same time accepts a hydrogen bond from the amino-N2 atom, Table 1. The tetrahedral environment for the O1w atom is completed by an acceptor interaction from the C5—H atom. The net result of the hydrogen bonding interactions is the formation of a supramolecular chain aligned along the a direction, Fig. 2.

Experimental

A solution of 7-chloro-4-hydrazinoquinoline (0.20 g, 1.0 mmol) and 3-cyanobenzaldehyde (1.2 mmol) in EtOH (5 ml) was maintained at room temperature overnight and rotary evaporated. The solid residue, was washed with cold Et2O (3 x 10 ml) and recrystallized from EtOH m. pt. 485–487 K, yield 77%. The sample for the X-ray study was slowly grown from moist EtOH and was found to be the monohydrate. MS/ESI: 305 [M—H—H2O], based on 35Cl. IR [KBr, cm-1] ν: 3215 (NH), 1577 (CN).

Refinement

The C-bound H atoms were geometrically placed (C–H = 0.95 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The O– and N-bound H atoms were located from a difference map and refined with Uiso(H) = 1.2Ueq(N) or 1.5Ueq(O).

Figures

Fig. 1.
The asymmetric unit in (I) showing displacement ellipsoids at the 70% probability level.
Fig. 2.
Supramolecular 1-D chain in (I) aligned along [100]. The O–H···N (orange) and N–H···O (blue) hydrogen bonds are shown as dashed lines. Colour code: Cl, cyan; O, red; N, blue; C, grey; and ...

Crystal data

C17H11ClN4·H2OZ = 2
Mr = 324.76F(000) = 336
Triclinic, P1Dx = 1.432 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.7406 (2) ÅCell parameters from 11816 reflections
b = 9.8587 (3) Åθ = 2.9–27.5°
c = 10.2301 (2) ŵ = 0.26 mm1
α = 110.8897 (15)°T = 120 K
β = 93.4341 (16)°Plate, yellow
γ = 110.6766 (15)°0.12 × 0.09 × 0.04 mm
V = 752.93 (3) Å3

Data collection

Nonius KappaCCD area-detector diffractometer3425 independent reflections
Radiation source: Enraf Nonius FR591 rotating anode2902 reflections with I > 2σ(I)
10 cm confocal mirrorsRint = 0.046
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.0°
[var phi] and ω scansh = −11→11
Absorption correction: multi-scan (SADABS; Sheldrick, 2007)k = −12→12
Tmin = 0.901, Tmax = 0.990l = −13→13
14600 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.10w = 1/[σ2(Fo2) + (0.023P)2 + 0.7336P] where P = (Fo2 + 2Fc2)/3
3425 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = −0.25 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.19140 (6)0.44486 (6)−0.08216 (5)0.02503 (14)
N10.0883 (2)0.39813 (19)0.38535 (17)0.0215 (3)
N20.49296 (19)0.27107 (18)0.43632 (17)0.0181 (3)
H2N0.559 (3)0.270 (3)0.377 (2)0.022*
N30.52218 (19)0.23502 (18)0.55031 (16)0.0181 (3)
N41.1329 (2)0.0074 (2)0.7938 (2)0.0357 (5)
C10.1296 (2)0.3704 (2)0.4975 (2)0.0217 (4)
H10.06350.38060.56790.026*
C20.2613 (2)0.3278 (2)0.5209 (2)0.0204 (4)
H20.28160.30860.60360.024*
C30.3625 (2)0.3139 (2)0.42154 (19)0.0164 (4)
C40.3262 (2)0.3449 (2)0.29879 (19)0.0160 (4)
C50.4207 (2)0.3368 (2)0.1905 (2)0.0191 (4)
H50.51500.31130.19830.023*
C60.3779 (2)0.3654 (2)0.0746 (2)0.0203 (4)
H60.44110.35830.00190.024*
C70.2398 (2)0.4052 (2)0.0646 (2)0.0194 (4)
C80.1449 (2)0.4147 (2)0.1657 (2)0.0193 (4)
H80.05150.44090.15570.023*
C90.1869 (2)0.3852 (2)0.28647 (19)0.0178 (4)
C100.6454 (2)0.1947 (2)0.5564 (2)0.0197 (4)
H100.70950.19190.48440.024*
C110.6892 (2)0.1527 (2)0.67264 (19)0.0192 (4)
C120.8252 (2)0.1113 (2)0.6757 (2)0.0216 (4)
H120.88670.10860.60200.026*
C130.8715 (2)0.0735 (2)0.7873 (2)0.0231 (4)
C140.7821 (3)0.0759 (2)0.8950 (2)0.0286 (5)
H140.81440.05080.97080.034*
C150.6451 (3)0.1154 (3)0.8908 (2)0.0298 (5)
H150.58290.11660.96400.036*
C160.5979 (3)0.1531 (2)0.7807 (2)0.0240 (4)
H160.50340.17920.77860.029*
C171.0162 (3)0.0351 (2)0.7902 (2)0.0275 (5)
O1W0.74203 (19)0.2487 (2)0.26148 (16)0.0261 (3)
H1W0.746 (3)0.160 (3)0.231 (3)0.039*
H2W0.845 (4)0.311 (3)0.302 (3)0.039*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0233 (2)0.0305 (3)0.0261 (3)0.0115 (2)0.00062 (18)0.0168 (2)
N10.0203 (8)0.0239 (8)0.0255 (8)0.0132 (7)0.0078 (7)0.0109 (7)
N20.0171 (8)0.0231 (8)0.0199 (8)0.0113 (6)0.0052 (6)0.0115 (7)
N30.0198 (8)0.0162 (7)0.0177 (7)0.0070 (6)0.0004 (6)0.0069 (6)
N40.0342 (10)0.0308 (10)0.0417 (11)0.0172 (9)−0.0047 (9)0.0122 (9)
C10.0209 (9)0.0243 (10)0.0229 (9)0.0116 (8)0.0080 (8)0.0097 (8)
C20.0210 (9)0.0211 (9)0.0201 (9)0.0087 (8)0.0031 (7)0.0094 (8)
C30.0150 (8)0.0130 (8)0.0191 (9)0.0044 (7)0.0018 (7)0.0055 (7)
C40.0144 (8)0.0136 (8)0.0195 (9)0.0063 (7)0.0021 (7)0.0056 (7)
C50.0162 (9)0.0211 (9)0.0225 (9)0.0100 (7)0.0031 (7)0.0094 (8)
C60.0182 (9)0.0218 (9)0.0223 (9)0.0083 (8)0.0049 (7)0.0100 (8)
C70.0188 (9)0.0179 (9)0.0217 (9)0.0067 (7)−0.0013 (7)0.0097 (7)
C80.0147 (8)0.0189 (9)0.0250 (9)0.0084 (7)0.0012 (7)0.0085 (8)
C90.0153 (8)0.0155 (8)0.0212 (9)0.0068 (7)0.0020 (7)0.0055 (7)
C100.0192 (9)0.0211 (9)0.0206 (9)0.0089 (7)0.0036 (7)0.0095 (8)
C110.0207 (9)0.0156 (8)0.0191 (9)0.0061 (7)−0.0013 (7)0.0066 (7)
C120.0212 (9)0.0182 (9)0.0236 (9)0.0066 (8)0.0017 (8)0.0085 (8)
C130.0247 (10)0.0163 (9)0.0250 (10)0.0077 (8)−0.0045 (8)0.0069 (8)
C140.0397 (12)0.0246 (10)0.0222 (10)0.0140 (9)−0.0016 (9)0.0107 (8)
C150.0408 (12)0.0311 (11)0.0229 (10)0.0172 (10)0.0082 (9)0.0138 (9)
C160.0272 (10)0.0246 (10)0.0230 (10)0.0134 (8)0.0045 (8)0.0101 (8)
C170.0321 (11)0.0200 (10)0.0266 (10)0.0093 (9)−0.0053 (9)0.0082 (8)
O1W0.0213 (7)0.0359 (8)0.0266 (8)0.0169 (7)0.0065 (6)0.0130 (7)

Geometric parameters (Å, °)

Cl1—C71.7454 (18)C7—C81.362 (3)
N1—C11.328 (2)C8—C91.423 (2)
N1—C91.368 (2)C8—H80.9500
N2—C31.366 (2)C10—C111.462 (2)
N2—N31.369 (2)C10—H100.9500
N2—H2N0.86 (2)C11—C121.388 (3)
N3—C101.278 (2)C11—C161.401 (3)
N4—C171.147 (3)C12—C131.401 (3)
C1—C21.393 (3)C12—H120.9500
C1—H10.9500C13—C141.386 (3)
C2—C31.389 (3)C13—C171.444 (3)
C2—H20.9500C14—C151.387 (3)
C3—C41.437 (2)C14—H140.9500
C4—C51.417 (3)C15—C161.389 (3)
C4—C91.419 (2)C15—H150.9500
C5—C61.373 (3)C16—H160.9500
C5—H50.9500O1W—H1W0.83 (3)
C6—C71.403 (3)O1W—H2W0.86 (3)
C6—H60.9500
C1—N1—C9116.07 (16)C9—C8—H8120.3
C3—N2—N3119.16 (15)N1—C9—C4123.72 (16)
C3—N2—H2N121.4 (14)N1—C9—C8116.93 (16)
N3—N2—H2N119.4 (14)C4—C9—C8119.35 (16)
C10—N3—N2115.64 (16)N3—C10—C11120.96 (17)
N1—C1—C2125.78 (18)N3—C10—H10119.5
N1—C1—H1117.1C11—C10—H10119.5
C2—C1—H1117.1C12—C11—C16119.17 (17)
C3—C2—C1118.91 (17)C12—C11—C10118.91 (17)
C3—C2—H2120.5C16—C11—C10121.92 (17)
C1—C2—H2120.5C11—C12—C13120.01 (18)
N2—C3—C2122.36 (16)C11—C12—H12120.0
N2—C3—C4119.55 (16)C13—C12—H12120.0
C2—C3—C4118.09 (16)C14—C13—C12120.63 (18)
C5—C4—C9118.81 (16)C14—C13—C17120.38 (17)
C5—C4—C3123.77 (16)C12—C13—C17118.98 (19)
C9—C4—C3117.42 (16)C13—C14—C15119.29 (18)
C6—C5—C4120.96 (17)C13—C14—H14120.4
C6—C5—H5119.5C15—C14—H14120.4
C4—C5—H5119.5C14—C15—C16120.6 (2)
C5—C6—C7119.30 (18)C14—C15—H15119.7
C5—C6—H6120.4C16—C15—H15119.7
C7—C6—H6120.4C15—C16—C11120.31 (19)
C8—C7—C6122.12 (17)C15—C16—H16119.8
C8—C7—Cl1119.72 (14)C11—C16—H16119.8
C6—C7—Cl1118.16 (15)N4—C17—C13178.8 (2)
C7—C8—C9119.46 (16)H1W—O1W—H2W102 (2)
C7—C8—H8120.3
C3—N2—N3—C10179.41 (16)C5—C4—C9—N1−179.23 (17)
C9—N1—C1—C2−1.0 (3)C3—C4—C9—N11.1 (3)
N1—C1—C2—C30.9 (3)C5—C4—C9—C80.6 (3)
N3—N2—C3—C22.4 (3)C3—C4—C9—C8−179.14 (16)
N3—N2—C3—C4−177.19 (15)C7—C8—C9—N1179.30 (17)
C1—C2—C3—N2−179.34 (17)C7—C8—C9—C4−0.5 (3)
C1—C2—C3—C40.2 (3)N2—N3—C10—C11−179.76 (16)
N2—C3—C4—C5−1.2 (3)N3—C10—C11—C12−179.33 (17)
C2—C3—C4—C5179.21 (17)N3—C10—C11—C160.7 (3)
N2—C3—C4—C9178.48 (16)C16—C11—C12—C13−1.2 (3)
C2—C3—C4—C9−1.1 (2)C10—C11—C12—C13178.81 (17)
C9—C4—C5—C6−0.7 (3)C11—C12—C13—C140.4 (3)
C3—C4—C5—C6178.94 (17)C11—C12—C13—C17−178.30 (17)
C4—C5—C6—C70.8 (3)C12—C13—C14—C150.4 (3)
C5—C6—C7—C8−0.8 (3)C17—C13—C14—C15179.10 (19)
C5—C6—C7—Cl1178.69 (14)C13—C14—C15—C16−0.4 (3)
C6—C7—C8—C90.6 (3)C14—C15—C16—C11−0.4 (3)
Cl1—C7—C8—C9−178.84 (14)C12—C11—C16—C151.2 (3)
C1—N1—C9—C40.0 (3)C10—C11—C16—C15−178.82 (19)
C1—N1—C9—C8−179.86 (17)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1w—H1w···N4i0.83 (3)2.21 (3)2.982 (3)155 (3)
O1w—H2w···N1ii0.86 (3)1.99 (3)2.828 (3)164 (3)
N2—H2n···O1w0.86 (3)2.07 (3)2.917 (2)167 (3)
C5—H5···O1w0.952.393.331 (3)169

Symmetry codes: (i) −x+2, −y, −z+1; (ii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5242).

References

  • Andrade, A. A., Varotti, F. D., de Freitas, I. Q., de Souza, M. V. N., Vasconcelos, T. R. A., Boechat, N. & Krettli, A. U. (2007). Eur. J. Pharm 558, 194–198. [PubMed]
  • Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  • Cunico, W., Cechinel, C. A., Bonacorso, H. G., Martins, G. M. A. P., Zanetta, N., de Souza, M. V. N., Freitas, I. Q., Soares, R. P. P. & Krettli, A. U. (2006). Bioorg. Med. Chem. Lett. 16, 649–653.
  • Elslager, E. F., Tendick, F. H. & Werbel, L. M. (1969). J. Med. Chem 12, 600–607. [PubMed]
  • Font, M., Monge, A., Ruiz, I. & Heras, B. (1997). Drug Des. Disc 14, 259–272. [PubMed]
  • Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
  • Kaiser, C. R., Pais, K. C., de Souza, M. V. N., Wardell, J. L., Wardell, S. M. S. V. & Tiekink, E. R. T. (2009). CrystEngComm, 11, 1133–1140.
  • Kaminsky, D. & Meltzer, R. I. (1968). J. Med. Chem 11, 160–163. [PubMed]
  • Musiol, R., Jampilek, J., Buchta, V., Silva, L., Halina, H., Podeszwa, B., Palka, A., Majerz-Maniecka, K., Oleksyn, B. & Polanski, J. (2006). Bioorg. Med. Chem 14, 3592–3598. [PubMed]
  • Nakamura, T., Oka, M., Aizawa, K., Soda, H., Fukuda, M., Terashi, K., Ikeda, K., Mizuta, Y., Noguchi, Y., Kimura, Y., Tsuruo, T. & Kohno, S. (1999). Biochem. Biophys. Res. Commun 255, 618–624. [PubMed]
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Palmer, K. J., Holliday, S. M. & and Brogden, R. N. (1993). Drugs, 45, 430–475. [PubMed]
  • Ridley, R. G. (2002). Nature (London), 415, 686–693. [PubMed]
  • Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Silva, A. D. da, de Almeida, M. V., de Souza, M. V. N. & Couri, M. R. C. (2003). Curr. Med. Chem 10, 21–39. [PubMed]
  • Sloboda, A. E., Powell, D., Poletto, J. F., Pickett, W. C., Gibbons, J. J., Bell, D. H., Oronsky, A. L. & Kerwar, S. S. (1991). J. Rheumatol. 18, 855–860. [PubMed]
  • Souza, M. V. N. de (2005). Mini-Rev. Med. Chem 5, 1009–1017. [PubMed]
  • Tanenbaum, L. & Tuffanelli, D. L. (1980). Arch. Dermatol 116, 587–591. [PubMed]
  • Warshakoon, N. C., Sheville, J., Bhatt, R. T., Ji, W., Mendez-Andino, J. L., Meyers, K. M., Kim, N., Wos, J. A., Mitchell, C., Paris, J. L., Pinney, B. B. O., Reizes, O. & Hu, X. E. (2006). Bioorg. Med. Chem. Lett 16, 5207–5211. [PubMed]
  • Westrip, S. P. (2009). publCIF. In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography