PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): o3154.
Published online 2009 November 21. doi:  10.1107/S1600536809048855
PMCID: PMC2971802

4-Bromo-2-{(E)-3-[1-(hydroxy­imino)eth­yl]phenyl­imino­meth­yl}phenol

Li Xua,* and Lei Wua

Abstract

In the title compound, C15H13BrN2O2, he oxime unit adopts an E conformation with respect to the O—H group. A classical intra­molecular O—H(...)N hydrogen bond results in the formation of a six-membered ring. The crystal structure is stabilized by inter­molecular O—H(...)N hydrogen bonds between the hydr­oxy groups and the oxime N atoms. In addition, the crystal structure also features short inter­molecular Br(...)Br short contacts with a distance of 3.8768 (5) Å.

Related literature

For background to Schiff bases, see: Dong et al. (2007 [triangle], 2008 [triangle]); Wang et al. 2009 [triangle]). For background to oximes, see: Golovnia et al. (2009 [triangle]); Liu et al. (2008 [triangle]); Dong et al. (2009a [triangle]); Öztürk et al. (2009 [triangle]). For the synthesis, see: Dong et al. (2009b [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o3154-scheme1.jpg

Experimental

Crystal data

  • C15H13BrN2O2
  • M r = 333.18
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o3154-efi5.jpg
  • a = 17.020 (2) Å
  • b = 6.1676 (7) Å
  • c = 13.693 (1) Å
  • β = 96.461 (1)°
  • V = 1428.3 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 2.88 mm−1
  • T = 298 K
  • 0.45 × 0.20 × 0.10 mm

Data collection

  • Siemens SMART 1000 CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.357, T max = 0.762
  • 6906 measured reflections
  • 2492 independent reflections
  • 1799 reflections with I > 2σ(I)
  • R int = 0.051

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.100
  • S = 0.99
  • 2492 reflections
  • 182 parameters
  • H-atom parameters constrained
  • Δρmax = 0.47 e Å−3
  • Δρmin = −0.32 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]) and DIAMOND (Brandenburg, 1998 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809048855/lx2124sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809048855/lx2124Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Foundation of the Education Department of Gansu Province (No. 0904-11) and the ‘Jing Lan’ Talent Engineering Funds of Lanzhou Jiaotong University, which are gratefully acknowledged.

supplementary crystallographic information

Comment

Schiff base ligands containing oxygen and imine nitrogen atoms have attracted much attention due to their variety of applications as well as their strong coordination capability (Dong et al., 2007; Dong et al., 2008; Wang et al., 2009). The oxime compounds frequently exhibit versatility in organic, inorganic, bioinorganic, pigment, analytical, dyes and medical chemistry (Golovnia et al., 2009; Liu et al., 2008; Dong et al., 2009a; Öztürk et al., 2009). Owing to the importance of oxime-type compounds, we report the crystal structure of the title compound (Fig. 1).

In the crystal structure, all bond lengths and bond angles are in normal ranges. The molecule has a crystallographic inversion centre and the oxime unit adopts an E conformation with respect to the O—H group. The aniline ring (C3–C8) and phenol ring (C10–C15) are almost parallel each other, making a dihedral angle of 2.71 (1)°. The torsion angles of O1—N1—C2—C3 and C5—N2—C9—C10 are 178.5 (3) and -178.8 (3)°, respectively. In the crystal structure, a classical intramolecular O—H···N hydrogen bond forms a six-membered ring (Fig. 2 and Table 1). The crystal packing (Fig. 2) is stabilized by intermolecular O—H···N hydrogen bonds between the hydroxy groups and oxime N atoms, with a O1—H1···N1i (Table 1). In addition, the crystal structure was further stabilized by weak intermolecular Br···Brii (Fig. 2) short interactions with a distance of 3.8768 (5) Å.

Experimental

The title compound was synthesized according to an analogous method reported earlier (Dong et al., 2009b). To an ethanol solution (5 ml) of 3-aminophenylethanone oxime (150.2 mg, 1.00 mmol) was added dropwise an ethanol solution (5 ml) of 5-bromosalicylaldehyde (201.1 mg, 1.00 mmol) then the yellow precipitate was obtained. The mixture solution was stirred at 328–333 K for 1 h. After cooling to room temperature, the precipitate was filtered off, dried in vacuo and purified by recrystallization from ethanol of solid. Yield: 54.01%, m. p. 459–461 K. Anal. Calc. for C15H13BrN2O2: C, 54.07; H, 3.93; N, 8.41. Found: C, 54.32; H, 4.01; N, 8.81.

Yellow needle-like single crystals suitable for X-ray diffraction studies were obtained by slow evaporation from a solution of dichloromethane at room temperature for about four weeks.

Refinement

Non-H atoms were refined anisotropically. H atoms were treated as riding atoms with distances C—H = 0.96 Å (CH3), 0.93 Å (CH), O—H = 0.82 Å for (OH). The isotropic displacement parameters for all H atoms were set equal to 1.2 or 1.5 Ueq of the carrier atom.

Figures

Fig. 1.
The molecule structure of the title compound with atom numbering. Displacement ellipsoids for non-hydrogen atoms are drawn at the 30% probability level.
Fig. 2.
O—H..N and Br···Br interactions (dotted lines) in the crystal structure of the title compound. [Symmetry codes: (i) -x + 1, y + 1/2, -z + 3/2; (ii) -x + 1, y - 1/2, -z + 3/2; (iii) -x, -y + 3, -z + 1.]

Crystal data

C15H13BrN2O2F(000) = 672
Mr = 333.18Dx = 1.549 Mg m3
Monoclinic, P21/cMelting point = 459–461 K
Hall symbol: -p 2ybcMo Kα radiation, λ = 0.71073 Å
a = 17.020 (2) ÅCell parameters from 2173 reflections
b = 6.1676 (7) Åθ = 2.7–23.8°
c = 13.693 (1) ŵ = 2.88 mm1
β = 96.461 (1)°T = 298 K
V = 1428.3 (3) Å3Needle-like, yellow
Z = 40.45 × 0.20 × 0.10 mm

Data collection

Siemens SMART 1000 CCD area-detector diffractometer2492 independent reflections
Radiation source: fine-focus sealed tube1799 reflections with I > 2σ(I)
Detector resolution: 10.0 pixels mm-1Rint = 0.051
[var phi] and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −20→14
Tmin = 0.357, Tmax = 0.762k = −7→7
6906 measured reflectionsl = −15→16

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: difference Fourier map
wR(F2) = 0.100H-atom parameters constrained
S = 0.99w = 1/[σ2(Fo2) + (0.0498P)2] where P = (Fo2 + 2Fc2)/3
2492 reflections(Δ/σ)max < 0.001
182 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = −0.32 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br0.46909 (2)−0.34895 (6)0.66885 (3)0.05662 (19)
N10.04843 (18)1.3049 (4)0.46740 (19)0.0451 (7)
N20.25065 (15)0.4933 (4)0.52712 (19)0.0416 (7)
O10.01134 (16)1.4311 (4)0.38885 (16)0.0609 (8)
H1−0.00961.53730.41100.091*
O20.29339 (17)0.2760 (5)0.37605 (18)0.0688 (8)
H20.27180.37260.40440.103*
C10.0818 (3)1.0731 (7)0.3317 (2)0.0601 (11)
H1A0.03851.14540.29400.090*
H1B0.07530.91910.32470.090*
H1C0.13061.11600.30840.090*
C20.0833 (2)1.1340 (5)0.4385 (2)0.0355 (8)
C30.12600 (18)0.9934 (5)0.5170 (2)0.0328 (7)
C40.16790 (19)0.8077 (5)0.4921 (2)0.0361 (8)
H40.16830.77230.42610.043*
C50.2089 (2)0.6749 (5)0.5637 (2)0.0372 (8)
C60.2088 (2)0.7269 (6)0.6638 (2)0.0457 (9)
H60.23550.64020.71230.055*
C70.1674 (2)0.9129 (6)0.6892 (2)0.0541 (10)
H70.16700.94860.75510.065*
C80.1272 (2)1.0439 (6)0.6175 (2)0.0439 (9)
H80.10071.16640.63620.053*
C90.2887 (2)0.3533 (5)0.5848 (2)0.0402 (8)
H90.28860.36750.65240.048*
C100.33200 (19)0.1729 (5)0.5462 (2)0.0370 (8)
C110.3322 (2)0.1382 (6)0.4443 (3)0.0455 (9)
C120.3730 (2)−0.0397 (6)0.4104 (3)0.0554 (10)
H120.3726−0.06250.34320.067*
C130.4141 (2)−0.1828 (6)0.4770 (3)0.0520 (10)
H130.4413−0.30000.45440.062*
C140.4138 (2)−0.1477 (5)0.5778 (2)0.0391 (8)
C150.37336 (19)0.0263 (5)0.6123 (2)0.0393 (8)
H150.37350.04670.67970.047*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br0.0571 (3)0.0476 (3)0.0643 (3)0.01472 (19)0.0030 (2)0.00954 (19)
N10.056 (2)0.0395 (17)0.0372 (15)0.0112 (15)−0.0063 (14)0.0022 (13)
N20.0357 (17)0.0356 (17)0.0537 (17)0.0027 (13)0.0058 (14)0.0020 (13)
O10.083 (2)0.0526 (16)0.0436 (13)0.0295 (15)−0.0089 (13)0.0039 (12)
O20.078 (2)0.079 (2)0.0479 (14)0.0289 (17)0.0001 (15)0.0108 (14)
C10.081 (3)0.062 (2)0.0367 (19)0.028 (2)0.0017 (19)−0.0001 (18)
C20.036 (2)0.0329 (19)0.0373 (17)−0.0002 (15)0.0027 (15)−0.0020 (14)
C30.0309 (19)0.0315 (18)0.0353 (16)0.0001 (14)0.0005 (14)0.0005 (14)
C40.037 (2)0.037 (2)0.0338 (16)−0.0039 (15)0.0021 (15)−0.0024 (14)
C50.0311 (19)0.0339 (19)0.0462 (19)−0.0012 (14)0.0031 (15)0.0022 (15)
C60.051 (2)0.043 (2)0.043 (2)0.0113 (18)0.0038 (17)0.0141 (16)
C70.071 (3)0.058 (2)0.0331 (18)0.014 (2)0.0074 (18)0.0027 (17)
C80.052 (2)0.040 (2)0.0395 (18)0.0097 (17)0.0060 (17)0.0024 (16)
C90.040 (2)0.0346 (19)0.0455 (19)−0.0010 (16)0.0020 (16)−0.0017 (16)
C100.0321 (19)0.0332 (19)0.0443 (18)−0.0013 (15)−0.0016 (15)0.0004 (15)
C110.037 (2)0.050 (2)0.048 (2)0.0033 (17)0.0018 (17)0.0052 (18)
C120.057 (3)0.070 (3)0.0408 (19)0.012 (2)0.0101 (18)−0.0030 (19)
C130.051 (3)0.051 (2)0.055 (2)0.0117 (18)0.0109 (19)−0.0053 (18)
C140.034 (2)0.0331 (19)0.050 (2)−0.0024 (16)0.0022 (16)0.0017 (15)
C150.038 (2)0.038 (2)0.0411 (18)0.0003 (16)0.0013 (16)−0.0041 (15)

Geometric parameters (Å, °)

Br—C141.928 (3)C4—H40.9300
Br—Bri3.8768 (5)C5—C61.409 (5)
Br—Brii3.8768 (5)C6—C71.410 (5)
N1—C21.293 (4)C6—H60.9300
N1—O11.417 (3)C7—C81.390 (5)
N2—C91.294 (4)C7—H70.9300
N2—C51.446 (4)C8—H80.9300
O1—H10.8200C9—C101.466 (4)
O2—C111.377 (4)C9—H90.9300
O2—H20.8200C10—C151.411 (4)
C1—C21.507 (4)C10—C111.411 (5)
C1—H1A0.9600C11—C121.405 (5)
C1—H1B0.9600C12—C131.399 (5)
C1—H1C0.9600C12—H120.9300
C2—C31.504 (4)C13—C141.398 (5)
C3—C81.409 (4)C13—H130.9300
C3—C41.411 (4)C14—C151.387 (4)
C4—C51.401 (4)C15—H150.9300
C14—Br—Bri86.56 (10)C8—C7—C6121.3 (3)
C14—Br—Brii164.58 (10)C8—C7—H7119.4
Bri—Br—Brii105.395 (19)C6—C7—H7119.4
C2—N1—O1113.3 (3)C7—C8—C3120.9 (3)
C9—N2—C5122.5 (3)C7—C8—H8119.6
N1—O1—H1109.5C3—C8—H8119.6
C11—O2—H2109.5N2—C9—C10121.6 (3)
C2—C1—H1A109.5N2—C9—H9119.2
C2—C1—H1B109.5C10—C9—H9119.2
H1A—C1—H1B109.5C15—C10—C11118.7 (3)
C2—C1—H1C109.5C15—C10—C9119.3 (3)
H1A—C1—H1C109.5C11—C10—C9122.0 (3)
H1B—C1—H1C109.5O2—C11—C12118.3 (3)
N1—C2—C3116.9 (3)O2—C11—C10121.5 (3)
N1—C2—C1122.8 (3)C12—C11—C10120.1 (3)
C3—C2—C1120.2 (3)C13—C12—C11120.4 (3)
C8—C3—C4117.6 (3)C13—C12—H12119.8
C8—C3—C2121.6 (3)C11—C12—H12119.8
C4—C3—C2120.8 (3)C14—C13—C12119.3 (3)
C5—C4—C3122.0 (3)C14—C13—H13120.4
C5—C4—H4119.0C12—C13—H13120.4
C3—C4—H4119.0C15—C14—C13120.9 (3)
C4—C5—C6119.5 (3)C15—C14—Br120.2 (2)
C4—C5—N2115.8 (3)C13—C14—Br118.9 (2)
C6—C5—N2124.6 (3)C14—C15—C10120.5 (3)
C5—C6—C7118.7 (3)C14—C15—H15119.7
C5—C6—H6120.6C10—C15—H15119.7
C7—C6—H6120.6
O1—N1—C2—C3178.5 (3)N2—C9—C10—C15179.2 (3)
O1—N1—C2—C1−1.9 (5)N2—C9—C10—C11−2.2 (5)
N1—C2—C3—C80.8 (5)C15—C10—C11—O2−179.6 (3)
C1—C2—C3—C8−178.8 (3)C9—C10—C11—O21.8 (5)
N1—C2—C3—C4−177.9 (3)C15—C10—C11—C120.1 (5)
C1—C2—C3—C42.5 (5)C9—C10—C11—C12−178.5 (3)
C8—C3—C4—C50.6 (5)O2—C11—C12—C13179.2 (4)
C2—C3—C4—C5179.4 (3)C10—C11—C12—C13−0.5 (6)
C3—C4—C5—C6−0.1 (5)C11—C12—C13—C140.4 (6)
C3—C4—C5—N2−178.6 (3)C12—C13—C14—C150.0 (5)
C9—N2—C5—C4−177.6 (3)C12—C13—C14—Br178.9 (3)
C9—N2—C5—C64.0 (5)Bri—Br—C14—C15−39.2 (3)
C4—C5—C6—C7−0.3 (5)Brii—Br—C14—C15102.3 (4)
N2—C5—C6—C7178.1 (3)Bri—Br—C14—C13141.9 (3)
C5—C6—C7—C80.0 (6)Brii—Br—C14—C13−76.7 (5)
C6—C7—C8—C30.6 (6)C13—C14—C15—C10−0.4 (5)
C4—C3—C8—C7−0.9 (5)Br—C14—C15—C10−179.3 (2)
C2—C3—C8—C7−179.6 (3)C11—C10—C15—C140.3 (5)
C5—N2—C9—C10−178.8 (3)C9—C10—C15—C14179.0 (3)

Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) −x+1, y−1/2, −z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···N1iii0.822.102.830 (4)149
O2—H2···N20.821.912.635 (4)147

Symmetry codes: (iii) −x, −y+3, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2124).

References

  • Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  • Dong, W.-K., Duan, J.-G., Chai, L.-Q., Liu, G.-L. & Wu, H.-L. (2008). J. Coord. Chem 61, 1306–1315.
  • Dong, W.-K., Feng, J.-H. & Yang, X.-Q. (2007). Synth. React. Inorg. Met. Org. Nano-Chem 37, 61–65.
  • Dong, W.-K., Wu, J.-C., Sun, Y.-X., Yao, J. & Tong, J.-F. (2009a). Acta Cryst. E65, o1248. [PMC free article] [PubMed]
  • Dong, W.-K., Zhao, C.-Y., Sun, Y.-X., Tang, X.-L. & He, X.-N. (2009b). Inorg. Chem. Commun 12, 234–236.
  • Golovnia, E., Prisyazhnaya, E. V., Iskenderov, T. S., Haukka, M. & Fritsky, I. O. (2009). Acta Cryst. E65, o2018–o2019. [PMC free article] [PubMed]
  • Liu, G.-L., Chen, X., He, X.-N. & Dong, W.-K. (2008). Acta Cryst. E64, o659. [PMC free article] [PubMed]
  • Öztürk, A., Babahan, İ., Sarıkavaklı, N. & Hökelek, T. (2009). Acta Cryst. E65, o1059–o1060. [PMC free article] [PubMed]
  • Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Wang, X.-Q., Tong, J.-F., Dong, W.-K., Gong, S.-S. & Wu, J.-C. (2009). Acta Cryst. E65, o2013. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography