PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): m1531.
Published online 2009 November 7. doi:  10.1107/S1600536809045796
PMCID: PMC2971800

Di-μ-ethano­lato-bis­[diethano­lato(2-methyl­quinolin-8-olato)titanium(IV)]

Abstract

In the centrosymmetric dinuclear title compound, [Ti2(C10H8NO)2(C2H5O)6], the Ti atom is bonded to an N,O-bidentate quinolin-8-olate ligand, two terminal ethano­late anions and two bridging ethano­late anions in a distorted TiNO5 octa­hedral geometry. An intra­molecular C—H(...)O hydrogen bond occurs; in the crystal, inter­molecular C—H(...)O inter­actions help to establish the packing.

Related literature

For TiIV–8-hydroxy­quinolinates, see: Amini et al. (2004 [triangle]); Birdet et al. (1973 [triangle]); Studd & Swallow (1968 [triangle]). For a related structure, see: Faza­eli et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1531-scheme1.jpg

Experimental

Crystal data

  • [Ti2(C10H8NO)2(C2H5O)6]
  • M r = 682.51
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1531-efi1.jpg
  • a = 9.0497 (18) Å
  • b = 13.086 (3) Å
  • c = 14.189 (3) Å
  • β = 95.21 (3)°
  • V = 1673.4 (6) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.53 mm−1
  • T = 120 K
  • 0.45 × 0.28 × 0.23 mm

Data collection

  • Stoe IPDS II diffractometer
  • Absorption correction: numerical (X-SHAPE; Stoe & Cie, 2005 [triangle]) T min = 0.686, T max = 0.905
  • 12962 measured reflections
  • 4503 independent reflections
  • 3540 reflections with I > 2σ(I)
  • R int = 0.099

Refinement

  • R[F 2 > 2σ(F 2)] = 0.097
  • wR(F 2) = 0.197
  • S = 1.14
  • 4503 reflections
  • 203 parameters
  • H-atom parameters constrained
  • Δρmax = 1.26 e Å−3
  • Δρmin = −1.14 e Å−3

Data collection: X-AREA (Stoe & Cie, 2005 [triangle]); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2005 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809045796/hb5165sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809045796/hb5165Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful to Shahid Beheshti University for financial support.

supplementary crystallographic information

Comment

8-Hydroxyquinoline and its derivatives are reagents for the gravimetric analysis of metal ions and the crystal structures of a large number of metal 8-hydroxyquinolinates have been documented. However, for TiIV, only three 8-hydroxyquinolinates are known (Amini et al., 2004), (Birdet et al., 1973; Studd & Swallow, 1968). Recently, we have reported the structure of 2-methyl-8-hydroxyquinoline (Fazaeli et al., 2008). In continuation our work in preparation of 8-hydroxyquinoline derivatives of transition metal elements from corresponding alkoxides, here we report synthesis and characterization of the title compound, (I).

This molecule lie across crystallographic inversion centre and the assymetric unit therefore contains one-half of a molecule. The 8-hydroxy-2-methylquinolinate anion chelates to Ti in the triethanolate derivative; however, the coordination number is raised to six as two of the four ethanolate groups are bridging (Table 1) (Fig. 1).

Experimental

Manipulations were carried out under nitrogen, using standard Schlenk techniques. TitaniumIV tetraethoxide was prepared from titaniumIV tetrapropoxide (Fluka) and dry ethanol by the alkoxide exchange method and it was puried by vacuum distillation. 8-Hydroxyquinoline (1.6 g, 10 mmol) was added to the reagent (2.28 g, 10 mmol) in toluene (10 ml). The mixture was stirred for a day and the solvent then removed under reduced pressure to furnish a yellow solid. The solid was crystallized from a dichloromethane n-hexane mixture to give yellow prisms of (I).

Refinement

All H atoms were positioned geometrically, with C—H = 0.93 Å, 0.96Å and 0.97Å for aromatic, methyl and CH2 hydrogen atoms respectively and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level. Atoms with the suffix a are generated by (2–x, 2–y, –z).

Crystal data

[Ti2(C10H8NO)2(C2H5O)6]F(000) = 720
Mr = 682.51Dx = 1.354 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1633 reflections
a = 9.0497 (18) Åθ = 2.1–29.2°
b = 13.086 (3) ŵ = 0.53 mm1
c = 14.189 (3) ÅT = 120 K
β = 95.21 (3)°Prism, yellow
V = 1673.4 (6) Å30.45 × 0.28 × 0.23 mm
Z = 2

Data collection

Stoe IPDS II diffractometer4503 independent reflections
Radiation source: fine-focus sealed tube3540 reflections with I > 2σ(I)
graphiteRint = 0.099
Detector resolution: 0.15 mm pixels mm-1θmax = 29.2°, θmin = 2.1°
rotation method scansh = −12→12
Absorption correction: numerical (X-SHAPE; Stoe & Cie, 2005)k = −17→17
Tmin = 0.686, Tmax = 0.905l = −19→15
12962 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.097Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.197H-atom parameters constrained
S = 1.14w = 1/[σ2(Fo2) + (0.1579P)2 + 0.3709P] where P = (Fo2 + 2Fc2)/3
4503 reflections(Δ/σ)max < 0.001
203 parametersΔρmax = 1.26 e Å3
0 restraintsΔρmin = −1.14 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.7281 (4)0.8994 (3)−0.1775 (3)0.0353 (7)
H1A0.67380.9058−0.12270.053*
H1B0.65980.8914−0.23290.053*
H1C0.78690.9596−0.18390.053*
C20.8274 (3)0.8079 (3)−0.1667 (2)0.0306 (7)
C30.8266 (4)0.7345 (3)−0.2396 (3)0.0354 (7)
H30.76500.7436−0.29500.042*
C40.9155 (4)0.6503 (3)−0.2294 (3)0.0349 (7)
H40.91650.6032−0.27840.042*
C51.0064 (4)0.6351 (3)−0.1439 (2)0.0310 (6)
C61.0989 (4)0.5492 (3)−0.1246 (3)0.0356 (7)
H61.10490.4985−0.17000.043*
C71.1805 (4)0.5410 (3)−0.0376 (3)0.0380 (8)
H71.24140.4844−0.02520.046*
C81.1734 (4)0.6166 (3)0.0329 (3)0.0349 (7)
H81.22980.60940.09070.042*
C91.0831 (4)0.7011 (3)0.0164 (2)0.0305 (7)
C100.9996 (3)0.7110 (3)−0.0735 (2)0.0284 (6)
C110.6511 (5)0.7812 (4)0.0572 (4)0.0516 (11)
H11A0.65600.7490−0.00400.062*
H11B0.55570.81490.05730.062*
C120.6658 (9)0.7025 (4)0.1327 (6)0.081 (2)
H12A0.76180.67100.13400.122*
H12B0.59030.65150.12020.122*
H12C0.65490.73400.19280.122*
C130.9606 (5)0.8822 (4)0.2620 (3)0.0431 (9)
H13A0.98890.81090.25850.052*
H13B0.85400.88530.26500.052*
C141.0373 (5)0.9294 (4)0.3496 (3)0.0512 (11)
H14A1.14270.92740.34620.077*
H14B1.01250.89180.40420.077*
H14C1.00570.99900.35470.077*
C151.2662 (4)0.9251 (3)−0.0154 (3)0.0347 (7)
H15A1.28250.86550.02490.042*
H15B1.34210.97500.00420.042*
C161.2818 (4)0.8944 (3)−0.1167 (3)0.0444 (9)
H16A1.20540.8464−0.13710.067*
H16B1.37720.8636−0.12100.067*
H16C1.27280.9539−0.15650.067*
N10.9147 (3)0.7980 (2)−0.0847 (2)0.0284 (6)
O11.0681 (3)0.7744 (2)0.07988 (17)0.0338 (5)
O20.7640 (3)0.8529 (2)0.07192 (19)0.0356 (6)
O30.9989 (3)0.9345 (2)0.17872 (19)0.0364 (6)
O41.1230 (2)0.96763 (19)−0.00251 (17)0.0302 (5)
Ti10.94929 (6)0.89765 (5)0.05650 (4)0.0280 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0283 (15)0.0410 (18)0.0341 (17)0.0002 (13)−0.0110 (13)0.0000 (13)
C20.0241 (13)0.0379 (16)0.0286 (15)−0.0053 (12)−0.0048 (11)0.0032 (12)
C30.0296 (15)0.0430 (18)0.0320 (17)−0.0047 (13)−0.0059 (12)0.0010 (14)
C40.0361 (16)0.0386 (18)0.0288 (16)−0.0035 (14)−0.0032 (13)−0.0046 (13)
C50.0260 (13)0.0359 (16)0.0312 (16)−0.0044 (12)0.0024 (11)0.0014 (13)
C60.0354 (16)0.0327 (16)0.0387 (18)0.0010 (13)0.0034 (14)−0.0022 (14)
C70.0332 (16)0.0360 (17)0.044 (2)0.0052 (14)0.0013 (14)0.0007 (15)
C80.0311 (15)0.0390 (18)0.0331 (17)0.0036 (13)−0.0055 (13)0.0010 (13)
C90.0254 (13)0.0358 (17)0.0293 (16)−0.0001 (12)−0.0031 (11)0.0016 (12)
C100.0237 (13)0.0350 (16)0.0258 (14)−0.0027 (12)−0.0007 (11)−0.0008 (12)
C110.0382 (19)0.061 (3)0.056 (3)−0.0186 (19)0.0044 (18)−0.009 (2)
C120.112 (5)0.039 (3)0.101 (5)−0.006 (3)0.055 (4)0.002 (3)
C130.0396 (18)0.060 (2)0.0292 (17)−0.0043 (17)0.0005 (14)0.0001 (16)
C140.045 (2)0.076 (3)0.0309 (19)0.013 (2)−0.0030 (16)−0.0061 (19)
C150.0218 (13)0.0404 (18)0.0420 (19)0.0031 (12)0.0028 (12)−0.0011 (14)
C160.0322 (17)0.056 (2)0.046 (2)−0.0024 (16)0.0101 (16)−0.0103 (18)
N10.0224 (11)0.0346 (14)0.0269 (13)−0.0025 (10)−0.0045 (10)0.0011 (10)
O10.0329 (11)0.0380 (13)0.0287 (12)0.0023 (10)−0.0073 (9)−0.0014 (9)
O20.0270 (11)0.0408 (14)0.0385 (13)−0.0043 (10)0.0009 (9)−0.0014 (10)
O30.0329 (12)0.0463 (15)0.0295 (12)−0.0052 (10)0.0000 (9)−0.0013 (10)
O40.0217 (9)0.0372 (12)0.0313 (12)0.0014 (9)0.0008 (8)−0.0026 (9)
Ti10.0224 (3)0.0344 (4)0.0264 (3)−0.0008 (2)−0.0020 (2)−0.0018 (2)

Geometric parameters (Å, °)

C1—C21.496 (5)C12—H12A0.9600
C1—H1A0.9600C12—H12B0.9600
C1—H1B0.9600C12—H12C0.9600
C1—H1C0.9600C13—O31.435 (5)
C2—N11.352 (4)C13—C141.501 (6)
C2—C31.411 (5)C13—H13A0.9700
C3—C41.364 (5)C13—H13B0.9700
C3—H30.9300C14—H14A0.9600
C4—C51.417 (5)C14—H14B0.9600
C4—H40.9300C14—H14C0.9600
C5—C61.414 (5)C15—O41.438 (4)
C5—C101.414 (5)C15—C161.512 (6)
C6—C71.384 (5)C15—H15A0.9700
C6—H60.9300C15—H15B0.9700
C7—C81.412 (5)C16—H16A0.9600
C7—H70.9300C16—H16B0.9600
C8—C91.383 (5)C16—H16C0.9600
C8—H80.9300Ti1—N12.387 (3)
C9—O11.331 (4)Ti1—O11.950 (3)
C9—C101.428 (4)Ti1—O21.808 (3)
C10—N11.375 (4)Ti1—O31.817 (3)
C11—O21.389 (5)Ti1—O4i2.008 (3)
C11—C121.483 (9)Ti1—O42.061 (2)
C11—H11A0.9700Ti1—Ti1i3.2948 (13)
C11—H11B0.9700
C2—C1—H1A109.5C14—C13—H13A109.4
C2—C1—H1B109.5O3—C13—H13B109.4
H1A—C1—H1B109.5C14—C13—H13B109.4
C2—C1—H1C109.5H13A—C13—H13B108.0
H1A—C1—H1C109.5C13—C14—H14A109.5
H1B—C1—H1C109.5C13—C14—H14B109.5
N1—C2—C3121.9 (3)H14A—C14—H14B109.5
N1—C2—C1117.6 (3)C13—C14—H14C109.5
C3—C2—C1120.4 (3)H14A—C14—H14C109.5
C4—C3—C2120.6 (3)H14B—C14—H14C109.5
C4—C3—H3119.7O4—C15—C16112.8 (3)
C2—C3—H3119.7O4—C15—H15A109.0
C3—C4—C5119.6 (3)C16—C15—H15A109.0
C3—C4—H4120.2O4—C15—H15B109.0
C5—C4—H4120.2C16—C15—H15B109.0
C6—C5—C10119.0 (3)H15A—C15—H15B107.8
C6—C5—C4124.4 (3)C15—C16—H16A109.5
C10—C5—C4116.6 (3)C15—C16—H16B109.5
C7—C6—C5119.5 (3)H16A—C16—H16B109.5
C7—C6—H6120.2C15—C16—H16C109.5
C5—C6—H6120.2H16A—C16—H16C109.5
C6—C7—C8121.5 (3)H16B—C16—H16C109.5
C6—C7—H7119.2C2—N1—C10117.1 (3)
C8—C7—H7119.2C2—N1—Ti1133.8 (2)
C9—C8—C7120.3 (3)C10—N1—Ti1109.0 (2)
C9—C8—H8119.9C9—O1—Ti1124.7 (2)
C7—C8—H8119.9C11—O2—Ti1151.4 (3)
O1—C9—C8123.8 (3)C13—O3—Ti1127.0 (2)
O1—C9—C10117.4 (3)C15—O4—Ti1i123.9 (2)
C8—C9—C10118.7 (3)C15—O4—Ti1127.5 (2)
N1—C10—C5124.0 (3)Ti1i—O4—Ti1108.13 (10)
N1—C10—C9115.0 (3)O2—Ti1—O397.01 (12)
C5—C10—C9120.9 (3)O2—Ti1—O1102.40 (12)
O2—C11—C12110.1 (5)O3—Ti1—O188.43 (12)
O2—C11—H11A109.6O2—Ti1—O4i93.27 (11)
C12—C11—H11A109.6O3—Ti1—O4i100.06 (12)
O2—C11—H11B109.6O1—Ti1—O4i161.18 (11)
C12—C11—H11B109.6O2—Ti1—O4160.52 (12)
H11A—C11—H11B108.2O3—Ti1—O497.94 (11)
C11—C12—H12A109.5O1—Ti1—O490.44 (10)
C11—C12—H12B109.5O4i—Ti1—O471.87 (10)
H12A—C12—H12B109.5O2—Ti1—N182.66 (11)
C11—C12—H12C109.5O3—Ti1—N1161.53 (12)
H12A—C12—H12C109.5O1—Ti1—N173.70 (10)
H12B—C12—H12C109.5O4i—Ti1—N198.39 (10)
O3—C13—C14111.0 (4)O4—Ti1—N187.05 (10)
O3—C13—H13A109.4
N1—C2—C3—C4−0.2 (5)C11—O2—Ti1—N127.3 (6)
C1—C2—C3—C4−179.1 (3)C11—O2—Ti1—Ti1i115.5 (6)
C2—C3—C4—C51.7 (5)C13—O3—Ti1—O238.1 (3)
C3—C4—C5—C6177.8 (3)C13—O3—Ti1—O1−64.2 (3)
C3—C4—C5—C10−0.7 (5)C13—O3—Ti1—O4i132.7 (3)
C10—C5—C6—C70.1 (5)C13—O3—Ti1—O4−154.4 (3)
C4—C5—C6—C7−178.5 (4)C13—O3—Ti1—N1−49.7 (5)
C5—C6—C7—C80.2 (6)C13—O3—Ti1—Ti1i169.8 (3)
C6—C7—C8—C90.3 (6)C9—O1—Ti1—O281.3 (3)
C7—C8—C9—O1178.5 (3)C9—O1—Ti1—O3178.2 (3)
C7—C8—C9—C10−1.0 (5)C9—O1—Ti1—O4i−64.3 (4)
C6—C5—C10—N1179.4 (3)C9—O1—Ti1—O4−83.9 (3)
C4—C5—C10—N1−1.9 (5)C9—O1—Ti1—N12.9 (2)
C6—C5—C10—C9−0.8 (5)C9—O1—Ti1—Ti1i−79.3 (3)
C4—C5—C10—C9177.9 (3)C15—O4—Ti1—O2−130.7 (4)
O1—C9—C10—N11.5 (4)Ti1i—O4—Ti1—O241.8 (4)
C8—C9—C10—N1−178.9 (3)C15—O4—Ti1—O389.5 (3)
O1—C9—C10—C5−178.3 (3)Ti1i—O4—Ti1—O3−98.04 (13)
C8—C9—C10—C51.3 (5)C15—O4—Ti1—O11.0 (3)
C3—C2—N1—C10−2.3 (5)Ti1i—O4—Ti1—O1173.48 (12)
C1—C2—N1—C10176.6 (3)C15—O4—Ti1—O4i−172.5 (3)
C3—C2—N1—Ti1−178.5 (2)Ti1i—O4—Ti1—O4i0.0
C1—C2—N1—Ti10.5 (5)C15—O4—Ti1—N1−72.7 (3)
C5—C10—N1—C23.4 (5)Ti1i—O4—Ti1—N199.83 (12)
C9—C10—N1—C2−176.4 (3)C15—O4—Ti1—Ti1i−172.5 (3)
C5—C10—N1—Ti1−179.5 (3)C2—N1—Ti1—O269.3 (3)
C9—C10—N1—Ti10.7 (3)C10—N1—Ti1—O2−107.0 (2)
C8—C9—O1—Ti1176.8 (3)C2—N1—Ti1—O3159.5 (3)
C10—C9—O1—Ti1−3.6 (4)C10—N1—Ti1—O3−16.8 (4)
C12—C11—O2—Ti188.3 (7)C2—N1—Ti1—O1174.6 (3)
C14—C13—O3—Ti1173.2 (3)C10—N1—Ti1—O1−1.8 (2)
C16—C15—O4—Ti1i−67.7 (4)C2—N1—Ti1—O4i−22.9 (3)
C16—C15—O4—Ti1103.7 (3)C10—N1—Ti1—O4i160.7 (2)
C11—O2—Ti1—O3−134.1 (6)C2—N1—Ti1—O4−94.1 (3)
C11—O2—Ti1—O1−44.2 (6)C10—N1—Ti1—O489.6 (2)
C11—O2—Ti1—O4i125.3 (6)C2—N1—Ti1—Ti1i−59.2 (3)
C11—O2—Ti1—O485.9 (7)C10—N1—Ti1—Ti1i124.4 (2)

Symmetry codes: (i) −x+2, −y+2, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C15—H15A···O10.972.463.061 (5)120
C1—H1C···O3i0.962.383.292 (5)159
C3—H3···O1ii0.932.413.310 (5)163

Symmetry codes: (i) −x+2, −y+2, −z; (ii) x−1/2, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5165).

References

  • Amini, M. M., Mirzaee, M. & Ng, S. W. (2004). Acta Cryst. E60, m145–m146.
  • Birdet, P. H., Fraser, A. R. & Lau, C. F. (1973). Inorg. Chem. 12, 1322–1328.
  • Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  • Fazaeli, Y., Amini, M. M., Gao, S. & Ng, S. W. (2008). Acta Cryst. E64, o97. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stoe & Cie (2005). X-AREA, X-SHAPE and X-RED. Stoe & Cie, Darmstadt, Germany.
  • Studd, B. F. & Swallow, A. G. (1968). J. Chem. Soc. A, pp. 1961–1967.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography